a2 United States Patent

Birze et al.

US009160625B2

US 9,160,625 B2
*QOct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(60)

SYSTEM, METHOD, AND
COMPUTER-READABLE MEDIUM FOR
DYNAMICS DEVICE DISCOVERY FOR
SERVERS BINDING TO MULTIPLE
MASTERS

Applicant: AMX, LL.C, Richardson, TX (US)
Inventors: Brigitte Bernadette Birze, Oak Point,

TX (US); Mark Ethard Smith, Garland,
TX (US); Joel Shane Dick, Dallas, TX

(US)
Assignee: AMX LLC, Richardson, TX (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.
Appl. No.: 14/611,590
Filed: Feb. 2,2015
Prior Publication Data
US 2015/0146574 Al May 28, 2015

Related U.S. Application Data

Continuation of application No. 14/162,512, filed on
Jan. 23, 2014, now Pat. No. 8,948,172, which is a
continuation of application No. 13/487,345, filed on
Jun. 4, 2012, now Pat. No. 8,644,312, which is a
continuation of application No. 12/344,732, filed on
Mar. 2, 2009, now Pat. No. 8,194,660, which is a
continuation-in-part of application No. 11/636,918,
filed on Dec. 11, 2006, now abandoned, which is a
continuation of application No. 11/222,885, filed on
Sep. 9, 2005, now abandoned.

Provisional application No. 60/608,439, filed on Sep.
9,2004.

1700 —

Dynamic Physical

System Integrator Device

Multicast Address

(51) Int.CL
HO4L 12/24 (2006.01)
HO4L 12/28 (2006.01)
HO4W 4/06 (2009.01)
HO4W 48/10 (2009.01)
HO4L 12/40 (2006.01)
(52) US.CL
CPC ....... HO4L 41/0853 (2013.01); HO4L 12/2854

(2013.01); HO4L 12/40019 (2013.01); HO4W
4/06 (2013.01); HO4W 48/10 (2013.01)
Field of Classification Search
CPC ... HO4L 5/0053; HO4L 5/006; HO4L 5/0064;
HO4L 65/80; HO4L 5/1446; HO4W 28/0268;
HO4W 28/24
See application file for complete search history.

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

6,615,088 Bl *
6,744,711 B1*

9/2003 Myeret al. ......
6/2004 Ceshkovsky ...............

(Continued)

..... 700/20
369/44.28

Primary Examiner — JaeY Lee

(57) ABSTRACT

A system that facilitate broadcast of a device discovery bea-
con by a dynamic physical device wishing to bind to one or
more control systems are provided. If the dynamic physical
device comprises a server that is configured to bind to mul-
tiple master controllers, the dynamic physical device may
include a device Type Flag and set the value of the device
Type Flag to indicate the dynamic physical device comprises
a server. On detection of the beacon, a master controller
evaluates the device Type Flag if it is present in the device
discovery beacon. If the device Type Flag is present and
indicates the dynamic physical device comprise a server
which may bind to multiple master controllers, the master
controller may automatically load a device Module for the
dynamic physical device and commence communications
with the dynamic physical device with no manual interven-
tion.

20 Claims, 22 Drawing Sheets

Master Controller Master Controller

1740 1780 1781
f-1702
[=Transmit DDDP Beacons| 1704
Detect Beacon——iw| r1 708
Add to Unbound

DFD L\% 708

Detect »| ~1710

712 Add to Unbound

DPD via GDDP » 1714 DPD List

[«——Initiale Communication and Gontrok—rm——

Load DPD's
1716 Module

1718
[DPD Binding Notification=

1720

Detect DPD Binding

722
Remave DPD from
Unbound DPD List




US 9,160,625 B2
Page 2

(56) References Cited 2005/0083905 Al* 4/2005 Nishidaetal. .............. 370/351
2007/0055390 Al* 3/2007 Simonetal. ............ 700/19
U.S. PATENT DOCUMENTS

6,763,040 B1* 7/2004 Hiteetal. ....cceoovenine 370/522 * cited by examiner



U.S. Patent Oct. 13,2015

20

~

master
controller

Sheet 1 of 22

user
interface
device

control area network

14

US 9,160,625 B2

16a

/J

device,

device,

12a

control area network

Figure 1



U.S. Patent Oct. 13, 2015 Sheet 2 of 22 US 9,160,625 B2

42 61

NetLinx
interpreter

device
access

48a 46 |
(‘/ ’ other Java
NetLinx js | objects 66
program \., ‘ 62
'y NetLinx
program
4
50
[/

I
I
|
!
I
Java >
library |
I
j I
% R FW event module
Java >
libral -1---1-"—— -
44 ry

device control FW

7 54
A 4 f/
| control ports |
7y A A 7 Y
14 16a 16b 16n
/‘/ L 4 A /“/ \ 4
user
interface device, device, ¢ o o device,
device

Figure 2



US 9,160,625 B2

Sheet 3 of 22

Oct. 13, 2015

U.S. Patent

ao1nap |eaishyd o} spuewwod

70

DUET

I .
\ ~

(snyejs) Juana aoap |eoishyd

=

| Idv 1310

1]

4

er Java

Lz

objects

Idv %0eqpag) 13na |

FW event module

SNAPI API

] SjuaAa 80IABp ENIA

<t
(-}

SUCHEONII0U/SOSUOdSal BDIASP [BNLIA

\___

Y

A 4

device control FW

Figure 3



US 9,160,625 B2

Sheet 4 of 22

Oct. 13, 2015

U.S. Patent

821A3p |edisAyd o} spuBwwod

Y

I :
: N

(snjeys) JUaAa 2aIAap jeoisAyd

66

FW event module

70a

\l\ JUBAR (S)201ADp {B2ISAYd

[

other Java
cbjects

{s)aonap |eaisAyd 0} SpUBWIWOD

|
]
]
|
|
< |
|
|
]
]

device control FW

Figure 4



U.S. Patent

90-\

Oct. 13, 2015

92

data from user
interface device

v

94

| form system message

v

9%

send message onto
control area network

v

master controller
receives message

device control firmware
turns on appropriate
channel state associated
with data on user interface
device

send message to NetLinx
program

v

form message based on
channel

. 2

send message to FW event
module

L 2

SNAPI NetLinx device class
handler method invoked

communicate with recipient
device with recipient device
protocol

v /J 10
NEO API method invoked
v 112
DUET NetLinx device class r‘/ :
method invoked
v J 14

2

116

perform requested operation

Sheet 5 of 22

120 -\’

Figure 5

US 9,160,625 B2

send message from
device onto
control area network

[

v

N
E

master controller
receives message

[

v

126

device control firmware
tums on appropriate

channel associated with
operation on device

L

L2

n
«

send message to FW event
module

v

[2]
o

DUET NetLinx device class
method invoked

v

(23
N

DUET Listener method
invoked

2

[
S

SNAPI NetlLinx device class
method invoked

y

[R)
-]

form message based on
channel

2

(2]
(-]

send message to NetLinx
program

SRR R U U

v

-
o
[~

form message based on
channel

v

42

device control firmware
updates appropriate
channe! associated with
data on user interface

LUNRN

device
¥ 144
send message onto
control area network
v 146

update user
interface device




U.S. Patent Oct. 13, 2015 Sheet 6 of 22 US 9,160,625 B2

VCR

Figure 6



U.S. Patent Oct. 13, 2015 Sheet 7 of 22 US 9,160,625 B2

160 \ )
-~

by
oy Control program
. etLinx
NetLinx Interpreter develgpn_qent
application
INp === mmemmm e R e e L LR
(=)
o H
] 3
3 5
(4]
=
[1] m
a =3
o S
2 g
o § 165
" : 163
167 Dynamic Device 231 -\
\ Detector Application
° Y
g 2 Retrieve binding Information
5| WE
— 28| 3 Application Device i
sl |3 Database ; ; inding
(W] é < Bind Devices Appication
166 1 233 230 | Unbind Devices
8. M3 v
<« 38 yE
ocgl T~
'g a g Polled Seriat Physical Device \ J/
o [ Devices Database
create destroy =
DUET DUET 164 Mfg. Duet
object object 61 Module
162 —
‘\ r LY ~ TN copy/transfer
check search ~ Transfer
» Unbound delete e
Madules Application
Binding | add Device
Registry update Access copy >
purge on restart| Bound
| Modules
e
62 66
<
-
>

Figure 7



U.S. Patent Oct. 13, 2015 Sheet 8 of 22 US 9,160,625 B2

170
l 172 231

‘ 200 Application Device
Database

Device Detection

230

New device
detected?
Physical Device

Database

Is auto-binding
enabled?

178 190
\ 4 /‘/
No Does the new
device type match a No—p Manually bind device
defined type?

180

Automatically bind the new device

A 4
F Y

192

Figure 8A



U.S. Patent

200 \

=
|

Receive dynamic device
beacon datagram packet

v

Search for new device

206

Compare the new

Oct. 13, 2015

202

204

Sheet 9 of 22

208

Device ID and IP address

A\ 4

do not match

US 9,160,625 B2

210

Device ID does not match,
but an unbound device

A 4

matches IP address

212

Device ID does not match,

but a bound device matches
IP address

A 4

214

Device ID and IP address

device?

231

Application Device

Database

230

Physical Device

Database

Y

match, and device unbound

218

Device ID and IP address

h 4

match, and device bound

218

Device ID matches, IP
address does not match,

A 4

and device bound

220

Device ID matches, IP

A 4

address does not match,
and device unbound

Figure 8B

222

End

(N




U.S. Patent

250 \\

( Start

)

|

Pall for new device
connections

v

Receive new device beacon

v

Search for new device

Compare the new
device?

Application Device

Database

Physical Device

Database

256

Oct. 13, 2015

252

252

Sheet 10 of 22

4

Device ID and serial port do
not match

258

A 4

Device ID matches a
different unbound device on
the same serial port

260

Device ID matches a
different bound device on
the same serial port

262

231

230

A 4

Device ID and serial port
match, and device unbound

264

Device ID and serial port
match, and device bound

266

A 4

Device ID matches, serial
port does not match, and
device bound

268

A 4

Device ID matches, serial
port does not match, and
device unbound

270

Figure 8C

US 9,160,625 B2

272

End

U




U.S. Patent

Oct. 13, 2015

Sheet 11 of 22

US 9,160,625 B2

1T earwon Govos Bimangs. || Croe vre Ootnes Daics. |, . vibw Otcovaeaa Oavices

o Enable Aulo Bnd
" Emble Subnet Mixch

Configure Binding.Options

T Gunge Sound Moddlis o Rt

34

1324

Figure 9



U.S. Patent Oct. 13, 2015 Sheet 12 of 22 US 9,160,625 B2

] Manoge Dovice Bindings * \& Crawts User Delined Device

.- Select the:Bindingvou wis idmmi@,{ii«;:qij‘“’z

" Physical Device V
Device 334
: 336

Virtual Device .
friendly Name Device,
"y OVD: 100

MyRecewer  41000:1:0- 7 Recewver - . [SDOLL0.-

: - Device Properties
Davica-Category: arist

Device-5DKChizc: zoﬁ.;xnxuédayk@x«li‘v; |
" QeviceWUIDL, SOOIl T L
DeviceModel AVREMD  ©
" Duet-Oevice: 410000 - [ |
Buet-Madule: foound/Denon AVR-5503, Comdn, ,

I

Figure 10



U.S. Patent Oct. 13, 2015 Sheet 13 of 22 US 9,160,625 B2

/2§ MY - Microsolt Internet Explorer

359 Virtual Device.
. Device: 4100010
sdk Class: QiscDevice -

L DeviceMake: bt
Dhysical Devices 5601120
Davice-SOXLIavx com.amo dart devicerdk DiscO:
ConfigName:  Sarant: Configuration j
. ConfigURls batps/Avww.gabeo.com |
 Davice:UHD: K06i2:0 e
5 Dévice Modeli- DU |
bmmduk: dyearric s

Figure 11



U.S. Patent Oct. 13, 2015 Sheet 14 of 22 US 9,160,625 B2

Add New Device - i
Adsiress (OP
iy
.
) . f .
Remove Device
i0008:1:0. ;

Figure 12



U.S. Patent Oct. 13, 2015 Sheet 15 of 22 US 9,160,625 B2

304y 1306

i Morage Devica Bindngs % - Create User Defingd Davica %} =1 Viewe Qigcovored Oavices

1000111105
001118

03§20 .

" Devicé Properties
“Devica-Categoryr. sl
Dpvice-dikar Mot

4081 = Physical-Devider S04t

" tash

Coofig-Names bis soke Configaritan
’ cooﬁg‘unlftz Wlfvw.vMAm
OyasesicTypes Tocat s
Duvice-UUID: S004:210
Devite:Modals OVISH
Ouet-Modula: - dynamic

P Y ARG

Figure 13



U.S. Patent

410 \’

Oct. 13, 2015

Sheet 16 of 22

US 9,160,625 B2

© . DavireReviiions 127

"Modute Proper :

la-yerstons 108

Duvice-Classs com,arcs chivtinpl deroniswSH03Dey -

DavireModel: AvR:5507

el ivica sk fRacer

Figure 14

0 L




U.S. Patent Oct. 13, 2015 Sheet 17 of 22 US 9,160,625 B2

1500\‘

1510

% Development IDE

Network
560

Remote Monitoring
System

Figure 15



U.S. Patent Oct. 13, 2015 Sheet 18 of 22 US 9,160,625 B2

DAD
1640

DAD
1641

Figure 16



U.S. Patent

Oct. 13, 2015 Sheet 19 of 22 US 9,160,625 B2
1700 —
Dynamic Physical !
System Integrator Device Multicast Address Master Controller Master Controller
1730 1740 1750 1760 1761
/-1 702
[—-Transmit DODDP Beaconm /—1 704
Detect Beacon—{| /_1 706
Add to Unbounc
OFOLS 4708
Detect Beaco n————rr—-1 /—1 710
1712 Add to Unbound
Bind DPD via DDDP Servi - 1714 DPD List
Load DFPD's
/_1 716 Module
[ -f——Initiate Communication and Cantrok—me——
71718
4D PD Rinding Notification=—
/—1 720
Detect DPD Binding Notification=———————pm}
/—1 722

Figure 17

Remove DPD from
Unbound DPD List



U.S. Patent

Oct. 13, 2015

Sheet 20 of 22 US 9,160,625 B2

842

DAD

DAD
1840

S 1820
N~

Beacon

/

\

842
DAD

DAD
1841

DAD
1842

Figure 18



US 9,160,625 B2

Sheet 21 of 22

Oct. 13, 2015

U.S. Patent

61 @Inbi

18171 gdd punogun
W0l OdQ eAowdy
PEB w.\ l——uoneoynoN Buipug gdqg lesieg————
zee—" UOIJEOION
uipulg Add
0s61—
[01JUOS) PUE LOKEDIUNLUILIOT Y1Ij——]p
ANpol
adIAB(] PEO'| 86 _,I\
976|—~ | ———mss daaa e ada puig
26—’
|OJJUCT) PUB UOHEIIINWILIOYD J]eni| s
sinpon zz61—"
30IAS(] PEOT|
0c6 T\ & uooeag 192100
gL61—'
JOJJUCT) PUB UONBIIUNWIWOY) ajeIjiu} >
aINpo _J
301haQ PEO SL6Fk
v_.m_‘l\ -t Lo%mlm_\ﬁ&mo
_ _snagadtt8
punoqun o] PPY
016 _‘I\ AI'ISWW@ ealeq
|
8061 1817 0dd
U:@:D 0} ppy
9061k L a—uooesg o0 —
./ 1anasg = Bel4 10
.vom —\ uodeag 4add
z064—"
1861 086l 1261 0461 096!} 0g61 0v6l
19)|0U0D) JSISEI  JO||0UDD) IDISE J9||0U0D JSISEI  JJOAUOD IBISEIN  SSAIPPY ISESINA 18AI98 101e1B3)U| WaISAS

v/oom_‘



U.S. Patent Oct. 13, 2015 Sheet 22 of 22 US 9,160,625 B2

2000— - 2002
.tart
2004

Monitor Multicast Address

+ —2006
Detect DDDP Beacon

2020

Add DPD to Unbound
DPD List

2008

Beacon
Include Device
Jype Flag

Yes

Yes

Pfevice Type
Flag Indicates
DP Serve

No +
2022
Continue Monitoring eI
Multicast Address

¢ 2012

Load DPD's Module and Remove DPD
from Unbound List

Y _~2014
Commence
Communication and
Control of DPD

DAD Bound
to DPD by

Binding
Notification on
ulticast Addres:

2016 No

Evice Type Flag
Indicates DP
Server

—2028
Remove DPD from
2018 Unbound List
Broadcast Binding
Notification 030

End

Figure 20



US 9,160,625 B2

1

SYSTEM, METHOD, AND
COMPUTER-READABLE MEDIUM FOR
DYNAMICS DEVICE DISCOVERY FOR
SERVERS BINDING TO MULTIPLE
MASTERS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of and claims priority to
U.S. patent application Ser. No. 14/162,512, entitled
METHOD, AND COMPUTER-READABLE MEDIUM
FOR DYNAMIC DEVICE DISCOVERY FOR SERVERS
BINDING TO MULTIPLE MASTERS, filed Jan. 23, 2014,
now issued U.S. Pat. No. 8,948,172, issued on Feb. 3, 2015,
which is a continuation of U.S. patent application Ser. No.
13/487,345, entitled SYSTEM, METHOD, AND COM-
PUTER-READABLE MEDIUM FOR DYNAMIC DEVICE
DISCOVERY FOR SERVERS BINDING TO MULTIPLE
MASTERS, filed Jun. 4, 2012, now issued U.S. Pat. No.
8,644,312, issued on Feb. 4, 2014, which is a continuation of
U.S. patent application Ser. No. 12/344,732, entitled “SYS-
TEM, METHOD, AND COMPUTER-READABLE
MEDIUM FOR DYNAMIC DEVICE DISCOVERY FOR
SERVERS BINDING TO MULTIPLE MASTERS?”, filed
Mar. 2, 2009, now issued U.S. Pat. No. 8,194,660, issued on
Jun. 5, 2012, which in turn is a continuation-in-part of patent
application Ser. No. 11/636,918, entitled “METHOD, SYS-
TEM, AND COMPUTER PROGRAM USING STANDARD
INTERFACES FOR INDEPENDENT DEVICE CON-
TROLLERS?”, filed Dec. 11, 2006, which is a continuation of
patent application Ser. No. 11/222,885, entitled “METHOD,
SYSTEM. AND COMPUTER PROGRAM USING STAN-
DARD INTERFACES FOR INDEPENDENT DEVICE
CONTROLLERS?, filed Sep. 9, 2005, which claims the ben-
efit of the earlier filing date of U.S. provisional patent appli-
cation Ser. No. 60/608,439, filed Sep. 9, 2004. This applica-
tion is also related to U.S. provisional patent application. Ser.
No. 61/017,628, entitled, “Dynamic Device Discovery for
Servers Binding to Multiple Masters”™, filed Dec. 29, 2007,
and U.S. provisional patent application Ser. No. 61/017,620,
entitled, “Server Enabled Device Description”, filed Dec. 29,
2007, the disclosures of which are incorporated in its entirety
herein reference.

FIELD OF THE INVENTION

The present invention is generally related to control sys-
tems and, more particularly, to mechanisms for dynamic
device discovery for servers binding to multiple master con-
trollers.

BACKGROUND OF THE INVENTION

Many systems, such as control systems, monitoring sys-
tems, and the like (collectively referred to herein as control
systems), exist that allow the discovery of devices in the
control system. However, contemporary mechanisms utilize
discovery protocols that allow a device to bind to only a single
master.

Conventional discovery and static binding routines require
an administrator to make an explicit, manual choice of which
master controller a device is bound. Some mechanisms pro-
vide an auto-bind option that facilitates a master controller to
automatically bind to any device which matches a dynamic
application device maintained by the master controller. How-
ever, contemporary auto-bind mechanisms may cause cata-

10

15

20

25

30

35

40

45

50

55

60

65

2

strophic, undefined results when multiple master controllers
attempt to bind to the same physical device, e.g., physical
devices that are not configured to be bound to multiple master
controllers. Accordingly, static binding mechanisms are pre-
ferred in conventional systems when multiple master control-
lers are listening to the same multicast address for a common
device type.

Numerous systems exist, such as Remote Monitoring Sys-
tems (RMSs), which include servers that must bind to mul-
tiple master controllers. Static binding mechanisms are typi-
cally employed if multiple masters monitor a common
multicast address to avoid binding of devices to multiple
controllers even if servers are deployed that must bind to
multiple masters. Consequently, an administrator must dis-
advantageously manually bind the servers to each of the mas-
ter controllers.

Therefore, what is needed is a device discovery mechanism
that allows servers to automatically bind to multiple master
controllers without collisions, thereby overcoming the need
to manually bind each master controller.

SUMMARY OF THE INVENTION

The present invention provides a system, method, and
computer readable medium for dynamic device discovery and
binding of servers to multiple master controllers. A device
discovery beacon that includes a device Type Flag may be
broadcast by a dynamic physical device. If the dynamic
physical device comprises a server that is configured to bind
to multiple master controllers, the dynamic physical device
sets the value of the device Type Flag to indicate the dynamic
physical device comprises a server. On detection of the bea-
con, a master controller configured according to disclosed
embodiments may evaluate the device Type Flag. Upon deter-
mining the device Type Flag indicates the dynamic physical
device comprise a server, the master controller may load a
device Module for the dynamic physical device and com-
mence communications with the dynamic physical device. In
this instance, the master controller advantageously does not
broadcast a binding notification thereby allowing other mas-
ter controllers to bind with the same dynamic physical device.

In one embodiment of the disclosure, a method of binding
a system server device to a controller is provided. The method
includes receiving, by a first master controller, a first device
discovery beacon from a first system server device, evaluating
the beacon for inclusion of a device type flag, determining the
beacon includes the device type flag, evaluating a value of the
device type flag, determining the value indicates the first
system server device comprises a server configured to bind to
multiple master controllers, and loading, by the first master
controller, an instance of a device module associated with the
first system server device responsive to determining the value
indicates the device comprises a server configured to bind to
multiple master controllers.

In a further embodiment of the disclosure, a computer-
readable medium having computer-executable instructions
for execution by a processing system, the computer-execut-
able instructions for binding a system server device to a
controller is provided. The computer-readable medium com-
prises instructions that, when executed, cause the processing
system to receive, by a first master controller, a first device
discovery beacon from a first system server device, evaluate
the beacon for inclusion of a device type flag, determine the
beacon includes the device type flag, evaluate a value of the
device type flag, determine the value indicates the system
server device comprises a server configured to bind to mul-
tiple master controllers, load, by the first master controller, an



US 9,160,625 B2

3

instance of a device module associated with the first system
server device responsive to determining the value indicates
the device comprises a server configured to bind to multiple
master controllers, and commence communication and con-
trol of the first system server device by the first master con-
troller responsive to loading the instance of the device mod-
ule.

In a further embodiment of the disclosure, a system for
binding a control system device to a controller is provided.
The system comprises a first dynamic physical device com-
prising a server configured to bind to multiple master control-
lers, a first master controller communicatively coupled with
the first dynamic physical device and having a first instance of
a dynamic application device corresponding to the first
dynamic physical device, and a second master controller
communicatively coupled with the first dynamic physical
device and having a second instance of the dynamic applica-
tion device corresponding to the first dynamic physical
device. The first dynamic physical device broadcasts a first
device discovery beacon including a device type flag having
a value that indicates the first dynamic physical device com-
prises a server. The first master controller and the second
master controller receive the first device discovery beacon
and respectively evaluate the device type flag value. The first
master controller loads a first instance of a device module
associated with the first dynamic physical device responsive
to determining the value indicates the first dynamic physical
device comprises a server, and the second master controller
loads a second instance of the device module responsive to
determining the value indicates the first dynamic physical
device comprises a server.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure are best understood from
the following detailed description when read with the accom-
panying figures, in which:

FIG. 1 is a simplified top-level block diagram of a control
system configuration according to an embodiment of the
present invention;

FIG. 2 is a block diagram illustrating the components of a
master controller according to an embodiment of the present
invention;

FIG. 3 is a block diagram illustrating a standard interface
device controller configuration according to an embodiment
of the present invention;

FIG. 4 is a block diagram illustrating another standard
interface device controller configuration according to an
embodiment of the present invention;

FIG. 5 is a flow chart illustrating command processing
using a standard interface device controller according to an
embodiment of the present invention;

FIG. 6 is a block diagram illustrating a control system
configuration interconnecting two disparate protocols
according to an embodiment of the present invention;

FIG. 7 is a block diagram illustrating the components of a
dynamic device detection application according to an
embodiment of the present invention;

FIG. 8A is a flow chart generally illustrating dynamic
device processing according to an embodiment of the present
invention;

FIG. 8B is a flow chart illustrating dynamic IP device
processing according to an embodiment of the present inven-
tion;

FIG. 8C is a flow chart illustrating dynamic serial device
processing according to an embodiment of the present inven-
tion; and

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 9-14 illustrate an exemplary user interface and com-
puter program for managing dynamic devices according to an
embodiment of the present invention.

FIG. 15 is a diagrammatic representation of a control sys-
tem configuration that provides for device control and moni-
toring and in which a dynamic device discovery routine
implemented in accordance with disclosed embodiments
may be deployed;

FIG. 16 depicts a diagrammatic representation of a con-
temporary device discovery and binding mechanism;

FIG. 17 is a diagrammatic representation of a signaling
flow of a contemporary device discovery and static binding
routine;

FIG. 18 depicts a diagrammatic representation of a device
discovery and binding mechanism implemented in accor-
dance with disclosed embodiments;

FIG. 19 depicts a diagrammatic representation of a signal-
ing flow of a device discovery and binding routine that facili-
tates binding a server to multiple masters in accordance with
an embodiment; and

FIG. 20 is a flowchart that depicts a device discovery and
binding routine that facilitates binding a server to multiple
masters in accordance with an embodiment.

DETAILED DESCRIPTION OF THE INVENTION

Itis to be understood that the following disclosure provides
many different embodiments or examples for implementing
different features of various embodiments. Specific examples
of components and arrangements are described below to sim-
plify the present disclosure. These are, of course, merely
examples and are not intended to be limiting.

1. Duet Overview

Referring to FIG. 1, a simplified top-level block diagram of
a control system 10 configuration according to an embodi-
ment of the present invention is shown. One or more devices
164a-16% in the control system 10 can send control commands
to and/or receive control messages from a master controller
40 on one or more control area networks 12 and 12a. The
present invention includes common application program-
ming interfaces (APIs) that are used to represent the one or
more devices 16a-167. The one or more devices 16a-167 may
be wholly unrelated in technology. Therefore, the common
APIs represent the one or more devices 16a-16% by defining
astructure whereby different device technologies are grouped
together into classes by common operation and/or function-
ality from the general to the specific. Thus, different classes
are used to represent different groups and subgroups of tech-
nology for the one or more devices 16a-16x. For instance, a
class may represent all home entertainment devices, such as
VCR, television, CD and DVD. Another class may represent
specifically all brands of VCRs and another class may repre-
sent a particular brand/vendor of the VCR. The present inven-
tion recognizes that even devices that are wholly unrelated in
technology may share common functionality. For instance, a
DVD, TIVO, VCR, LD and Cassette Deck each share the
functional ability of playing some form of media. Thus, com-
mon APIs are used to abstract the operational and/or func-
tional capabilities of the one or more devices 16a-16n, such
that applications may communicate with the one or more
devices 16a-167n without concern for the underlying technol-
ogy and/or proprietary protocols of the devices.

Control system 10 includes one or more control area net-
works (CAN) 12 and 12a. Control area networks 12 and 12a
are local area networks used to interconnect a variety of
devices 16a-16n, user interface device 14 and master control-
ler 40. Optionally, the control area network may be used to



US 9,160,625 B2

5

interconnect other networks 18 and 20, such as a proprietary
network, local area network, an Intranet, or the Internet. Con-
trol area networks 12 and 12a may be used to interconnect
multiple disparate protocols. For instance, a Microsoft UPnP
(Universal Plug and Play) network may be interconnected to
a Sun Microsystems JINI network via control area networks
12 and 12a. Devices 16a-16#% include, but are not limited to,
physical and logical devices, equipment, and appliances. The
underlying network may be wired, wireless, power line car-
riers, or any suitable transmission medium. Some devices
may be coupled to control area networks 12 and 12a via
additional intermediate communications devices such as an
RS 232 controller (not shown).

User interface device 14 is any device that is capable of
receiving user input and displaying or indicating control net-
work status. For example, a touch panel, a computer terminal
with a monitor, keyboard and pointing device, and any device
with similar functionalities may serve as user interface device
14. In addition, a user interface is any device that is capable of
receiving user input such as a simple push button keypad,
which may not have indicators for feedback, or an Infrared
remote control.

Master controller 40 generally includes a CPU-based con-
troller that controls the communications among user interface
device 14 and devices 16a-167. It is operable to receive user
inputs received by user interface devices, such as commands,
and instruct the appropriate device 16a-16# to act according
to the command. Master controller 40 may also poll each
device in control area network 12 periodically to monitor its
status. The system status and/or the status of each device may
be sent to user interface device 14 for display. The devices
16a-16n, user interface devices 15 and master controllers 40
may also be configured to handle dynamic device discovery
within control system 10.

Devices 16a-16x are configured to receive commands from
master controller 40 and operate or act according to the com-
mand. Devices 16a-16r may include equipment that affect or
monitor the various parameters of the premises. For example,
devices 16a-16n may include heating and air conditioning,
lighting, video equipment, audio equipment, sprinklers, secu-
rity cameras, infrared sensors, smoke detectors, or other simi-
lar device in a residential or commercial control area network
12. Devices 16a-16r may also be household appliances, such
as a hot tub, fireplace, microwave oven, coffee maker, or other
similar device that are capable of providing a current status of
its operational state to master controller 40, such as on/off,
temperature settings, current ambient temperature, light
intensity settings, volume settings, threshold settings, and
predetermined alphanumeric strings reflective of operational
states. Further, devices 16a-16nz may represent a logical
device, such as another control system 10 or a virtual device.
In one embodiment, a virtual device may be configured to
represent multiple physical devices.

Referring to FIG. 2, a block diagram illustrating the com-
ponents of a master controller 40 according to an embodiment
of the present invention is shown. Master controller 40
includes, but is not limited to, device control firmware 44, a
NetLinx interpreter 42 executing a NetLinx program 48a,
memory area 46, one or more control ports 54 and a Java
virtual machine 60. One or more devices 16a-16n and user
interface device 14 are connected to master controller via
control ports 54, or other input means (not shown). Memory
Area 46 includes a Netlinx program 48 that is executed as
NetLinx program 48a by NetLinx interpreter 42, and one or
more Java libraries 50 and 52 that are used by the Java virtual
machine 60. The one or more Java libraries 50 and 52 may be
dynamically loaded and/or updated with new methods while

10

15

20

25

30

35

40

45

50

55

60

65

6

the Java virtual machine 60 is executing. The Java libraries 50
and 52 may be either a standard Java Archive (JAR) file or an
Open Service Gateway Initiative (OSGi) bundle. An OSGi
bundle is a JAR (jar) file with a manifest file (.mf) listing the
services that are exported by the bundle (via a package name)
as well as any service that the bundle itself requires for execu-
tion. Within the OSGi framework every bundle has a pre-
defined lifecycle.

Referring to FIG. 3, a block diagram illustrating a standard
interface device controller configuration according to an
embodiment of the present invention is shown. The Java
virtual machine 60 includes a firmware event module 80, a
router (referred to as a “SNAPI object”) 62, DUET object 66,
and optionally one or more other Java objects 70. In one
embodiment, the DUET object 66 is dynamically loaded
and/or updated from one or more Java libraries 50 and 52. In
this case, the one or more Java libraries 50 and 52 are referred
to as “DUET modules” since they represent the uninstanti-
ated DUET objects 66.

Generally, the DUET object 66 provides services to trans-
late between a set of device specific API calls and a device’s
proprietary protocol, thereby hiding the proprietary protocol
from the service user. For example, a DUET object 66 that is
communicating with a VCR that uses a proprietary serial
protocol might provide PLAY, STOP, PAUSE, FFW and
REWIND services via the DUET API 78. The DUET object
66 generates the necessary serial protocol data and commu-
nicates with the VCR. Any object having access to the DUET
object 66 could invoke a DUET API 78 method to affect
change on the physical VCR with no knowledge of the under-
lying protocol.

The DUET object 66 contains a majority of the translation
between a standard API and the proprietary protocol of the
one or more devices 16a-16x. For instance, the DUET object
66 contains a majority of the translation between the standard
API and the proprietary protocol for a manufacturer’s brand
of a particular physical device. The DUET object 66 may
include one or more NetlLinx device class 68 objects each
having a NetLinx API 74, and a standard DUET API 78
grouped into device categories. The DUET API 78 device
categories include, but are not limited to, a switcher, an A/V
receiver, a plasma monitor, a video projector, a television, a
digital satellite system (DSS), a set top box, a disk device, a
DVR/PVR, a digital media player, a VCR, a video confer-
encer, an audio conferencer, an audio tuner, a cassette deck, a
level controller, a pre-amplifier, a audio processor, a camera,
a document camera, a slide projector, lights, an HVAC, a
security system, a weather device, a pool or spa, and a lift/
screen/shade/window/door. Each DUET API 78 device cat-
egory includes a standard API that is specific to that device
category. For instance, the DUET API 78 may include play
(), stop (), pause ( ), fw () and rewind ( ) methods that
correspond to VCR devices.

The DUET object 66 communicates with the SNAPI object
62, the FW event module 80 and, optionally, one or more
other Java objects 70. The DUET object 66 implements a
standard DUET API 78. The SNAPI object 62 communicates
with the DUET object 66 by invoking methods specific to
device categories in the standard DUET API 78 of the DUET
object 66. One or more NetLinx device class 68 objects will
then execute the necessary device specific processing for a
specific task. The NetLinx device class 68 encapsulates the
communication protocols necessary to communicate with a
specific device or equipment controlling device (e.g., a single
DPS (device:port:system)). The NetLinx device class 68 API
includes, but is not limited to, on (), off (), send_level () and
send_string () methods. For example, a play ( ) method on an



US 9,160,625 B2

7

IR controlled VCR would request the underlying physical
device (IR emitter) to send IR pulses to a VCR, thereby
resulting in a play operation on the VCR. However, not all
DUET objects 66 will have a NetLinx device class 68. Access
to one or more devices 16a-16» may also be through some
other Java enabled transport (e.g., TCP/IP sockets), instead of
a NetLinx device class 68.

The one or more devices 16a-16# indirectly communicate
with the DUET object 66 using event handlers. In particular,
the one or more devices 16a-16» communicate with the
device control firmware 44, the device control firmware 44
routes any communication to the FW event module 80, and
the FW event module 80 posts events to pass this communi-
cation to a NetLinx device class 68 of the DUET object 66.
The DUET NetLinx device class 68 includes, but is not lim-
ited to, a IChannelListener interface, a IButtonListener inter-
face, a ILevelListener interface, a IDatalistener interface and
a ICustomlListener interface, each having one or more corre-
sponding event handler methods to catch the event posted by
the FW event module 80. The IButtonListener handles button
push and release events. The IChannelListener handles chan-
nel on and off events. The ILevelListener handles level
events. The IDatal.istener handles string, command, online
and offline events. The ICustomListener is a catch-all for all
other types of events. A DUET NetlLinx device class 68 only
implements those interfaces that it needs. The DUET object
66 processes device events by translating proprietary event
data into a status object that is understood by the SNAPI
object 62 along with any other entity, such as other Java
objects 70, listening for events from one or more devices
16a-167. Entities that wish to receive device events register as
alistener with the DUET object 66. When an event occurs, the
event data is packaged into a status object and a predefined
handler routine is called for each of the registered listeners.

A DUET object 66 does not necessarily have its own pro-
cessing thread. For instance, a DUET object 66 utilizing a
NetLinx device class 68 object as its connect to one or more
devices 16a-167 will most likely not have its own thread.
Instead, its ‘receive’ thread is provided by an underlying event
router thread that is receiving data from the firmware event
module 80. Whereas, a DUET object that communicates with
one or more devices 16a-16x via a TCP/IP socket must pro-
vide a separate thread of execution as a listener to the TCP/IP
socket.

A SNAPI object 62 is the inverse of a DUET object 66. The
SNAPI object 62 processes data coming into the JVM in a
proprietary format and translates it into calls made into a
DUET object 66. The SNAPI object 62 is configured to indi-
rectly communicate with a NetLinx program 48a. The SNAPI
object 62 may include one or more Netlinx device class 64
objects each having a NetLinx API 72, and a standard DUET
feedback API 76. The SNAPI object 62 communicates with
both the DUET object 66 and the FW event module 80. The
NetLinx program 48a indirectly communicates with the
SNAPI object 62 using event handlers. In particular, the
NetLinx program 48a communicates with the device control
firmware 44, the device control firmware 44 routes any com-
munication to the FW event module 80, and the FW event
module 80 posts events to pass this communication to a
NetLinx device class 64 of the SNAPI object 62. Similar to
the DUET NetLinx device class 68, the SNAPI NetLinx
device class 64 includes, but is not limited to, a IChannelLis-
tener interface, a IButtonListener interface, a ILevelListener
interface, a IDatalistener interface and a ICustomListener
interface, each having one or more corresponding event han-
dler methods to catch the event thrown by the FW event
module 80.

25

30

35

40

45

55

8

Optionally, a DUET object 66 may expose multiple DUET
APIs 78 in order to represent a device 16a-16» having com-
bination functionality. For example, if a DUET object 66
controls a combination VCR/DVD player device 164, the
DUET object 66 could expose a VCR DUET API 78 and a
DVD DUET API 78. Thereby, Java objects 70 would have
access to the VCR functionality of the combination VCR/
DVD player device 16a by invoking methods in the VCR
DUET API 78 and access to the DVD functionality of the
combination VCR/DVD player device 164 through the DVD
DUET API 78.

Optionally, a single DUET object 66 may also serve as a
controller for multiple physical devices 16a-167, thereby cre-
ating a new abstract device. For example, a DUET object 66
could represent a matrix or library of VCR devices 16a-16n
by having multiple NetLinx device class objects 68, each
controlling a different physical VCR device 16a-16mn.

Referring to FIG. 4, a block diagram illustrating another
standard interface device controller configuration according
to an embodiment of the present invention is shown. In this
embodiment, one or more of the other Java objects 70 is a
router object 70a that may include a NetLinx device class 64
having a NetLinx API 72. The router object 70a has similar
functionality as the SNAPI object 62 previously described,
butis configured to communicate directly with Java programs
using Java methods.

As shown in FIGS. 3 and 4, multiple Java objects 70a-70n
(FI1G.4)or 70 (FIG. 3) may communicate with a single DUET
object 66 and its associated one or more devices 16a-16% by
invoking methods in the standard DUET API 78 of the DUET
object 66. For example, a Java object 70a that controls a
touchpanel and a Java object 705 that controls a keypad may
both communicate with a particular VCR device 16a which is
controlled through a single DUET object 66. In this instance,
both Java objects 70a and 7056 could invoke DUET API 78
method(s) to affect changes on the physical VCR device 16a.
Similarly, both Java objects 70a and 705 would be notified of
changes on the VCR device 16a through their respective
DUET feedback APIs 76.

The configuration as shown in FIG. 3 may be used to
communicate with a NetLinx program 48a whereas the con-
figuration as shown in FIG. 4 may be used to communicate
with existing and future generations of Java enabled devices.
Optionally, the configurations shown as in FIGS. 3 and 4 may
co-exist simultaneously in the same control system 10, such
that Java programs and NetLinx programs may co-exist
within the same control system 10.

II. Duet System Processing

Referring to FIG. 5, a flow chart illustrating command
processing using a standard interface device controller
according to an embodiment of the present invention is
shown. As shown at block 92, data is generated from a user
interface device 14 that will be communicated to one or more
devices 16a-16n. Data may be generated from the user inter-
face device 14 by the user entering an alphanumeric string,
clicking on a button icon on a graphical user interface, push-
ing a button on a touch panel, or other suitable input. The user
interface device 14 then forms a control system message
including, but not limited to, a channel associated with the
data and/or the sender of the message, as shown at block 94.
Each of the one or more devices 16a-16#, both sender and
recipient devices, are uniquely identified by a DPS (device:
port:system) value. A channel is a number uniquely identify-
ing each addressable operation, component or graphical ele-
ment of each device 14 and 16a-16x. For instance, each
button icon on a graphical user interface of the user interface
device 14 is assigned a unique channel number. Further, the



US 9,160,625 B2

9

play, stop and rewind operation on a VCR device 16a-16% are
each assigned unique channel numbers. The message is then
sent onto the control area network 12, as shown at block 96.
As shown at block 98, the master controller 40 on that net-
work receives the message via one or more control ports 54.
Control ports 54 include, but are not limited to, Infrared (IR)
ports, serial ports, relays and digital I/O.

A channel state associated with the origin of the data (e.g.,
a particular button pressed on user interface device 14) is
turned ON by the device control FW 44 to indicate that the
channel is on, as shown at block 100. A message incorporat-
ing the channel number and the sender of the message is then
sent to a NetLinx program 48a executed by a NetLinx inter-
preter 42, as shown at block 102. As shown at block 104, the
NetLinx program 48a determines the appropriate action
based on the channel number. Based on that action, the
NetLinx program 48a forms a message including the appro-
priate recipient and a channel number uniquely identifying an
operation on the recipient device 16a-16rn. The message is
sent via device control firmware 44 to FW event module 80
within the Java virtual machine 60, as shown at block 106. As
shown at block 108, based on the recipient and channel num-
ber, an appropriate event handler method is invoked within a
NetLinx device class 64 of the SNAPI object 62. The event
handler method invokes one or more DUET APIs 78 having
standard API methods that correspond to one or more opera-
tions on the recipient device 16a-167, as shown at block 110.
An appropriate method within a DUET NetLinx device class
68 is then invoked by the DUET API 78, as shown at block
112. The DUET NetLinx device class 68 method then com-
municates the requested operation to the recipient device
16a-167 using the recipient’s device protocol, as shown at
block 114. As shown at block 116, the requested operation is
thereby performed on the recipient device 16a-167.

Depending on the recipient device 16a-16r and the
requested operation, the recipient device 16a-167 may or may
not send a response message onto control area network 12. If
the recipient device 16a-167 does send a response message,
then the response message is sent onto the control area net-
work 12 as shown at block 122. As shown at block 124, the
master controller 40 on that network receives the message via
one or more control ports 54, and then processes the message.
A channel associated with the operation on the device 16a-
167 is turned ON by the device control FW 44, as shown at
block 126. A message incorporating the channel number and
the sender of the message is then sent via device control
firmware 44 to FW event module 80 within the Java virtual
machine 60, as shown at block 128.

As shown at block 130, based on the sender and channel
number, an appropriate event handler method is invoked
within a NetLinx device class 68 of the DUET object 66. The
event handler method invokes one or more DUET feedback
API1 76 standard API methods that correspond to one or more
operations in the SNAPI router 62, as shown at block 132. An
appropriate method within the SNAPI NetLinx device class
64 is then invoked by the DUET API 78, as shown at block
134. As shown at block 136, the SNAPI NetLinx device class
64 method then determines the appropriate recipient based on
the channel number and forms a message including the appro-
priate recipient and a channel number uniquely identifying a
SNAPI router notification 82. The message is sent via device
control firmware 44 to the NetLinx program 48a and executed
by a NetLinx interpreter 42, as shown at block 138.

As shown at block 140, the NetLinx program 48a deter-
mines the appropriate action based on the channel number.
Based on that action, NetLinx program 48a forms a message
including the appropriate recipient and a channel number

20

40

45

10

uniquely identifying a component on user interface 14. The
message is sent via device control firmware 44 to user inter-
face device 14, as shown at block 144. A channel associated
with the origin of the data (e.g., a particular button pressed on
user interface device 14) is updated by the device control FW,
as shown at block 142. The ON state of the channel of the
origin of the data (e.g., a particular button pressed on user
interface device 14) is conveyed to the user interface device
14, such that the user interface device 14 may provide feed-
back to the user. For instance, highlighting a particular button,
as shown at block 146.

For example, referring to FIGS. 1, 2 and 5, as shown at
block 92, a user may have selected a “play” button on a touch
panel of a user interface device 14 that corresponds to a
particular VCR 16a. Assuming that the “play” button is iden-
tified as channel “40” and the user interface device 14 is
identified as sender “128:1:1,” a message will be formed
containing at least the sender, channel pair (e.g., the message
contains “128:1:1” and “40”). The user interface device 14
may send the message to the master controller 40 via a serial
control port 54 on the master controller 40. A channel state
(e.g., “407) associated with the “play” button on user inter-
face device 14 is turned ON by the master controller to indi-
cate that the channel is on, as shown at block 100. A message
incorporating the channel number, the sender of the message,
and the recipient of the message is then sent to a NetLinx
program 48a executed by a NetLinx interpreter 42, as shown
at block 102.

As shown at block 104, the NetLinx program 48a deter-
mines the particular VCR device 16a based on the channel
number of the “play” button of the user interface 14 and forms
a message including the VCR 164 and a channel number
uniquely identifying an operation on the VCR 164a. Assuming
that the “play” operation on the VCR is identified as channel
“60” and the SNAPI NetLinx device class 64 representing
VCR 16a is identified as recipient “4000:1:1,” a message will
be formed containing at least the recipient, channel pair (e.g.,
the message contains “4000:1:1” and “60”).

The message is sent via device control firmware 44 to FW
event module 80 within the Java virtual machine 60, as shown
at block 106. As shown at block 108, based on the recipient
and channel number, a channel event handler method is
invoked within a NetLinx device class 64 of the SNAPI object
62. The event handler method invokes the play () method of
the DUET API 78 standard API that correspond to the play
operation on the VCR 164, as shown at block 110. The send-
String () method within the DUET NetLinx device class 68 is
then invoked by the DUET API 78, as shown at block 112.
The DUET NetLinx device class 68 method then communi-
cates the requested operation to the VCR 164 using the VCR’s
proprietary protocol, as shown at block 114. As shown at
block 116, the play operation is thereby performed on the
VCR 16a.

Referring to FIG. 6, a block diagram illustrating a control
system configuration interconnecting two disparate protocols
according to an embodiment of the present invention is
shown. In this configuration, one or more devices in a UPnP
network 18a communicate with a UPnP router 62a having
similar functionality as the SNAPI object 62 previously
described. Further, one or more devices in a JINI network 20a
communicate with a JINI router 624 also having similar func-
tionality as the SNAPI object 62 previously described.
Devices on the UPnP network 18a are interconnected to
devices on the JINI network 20a via DUET object 66. Addi-
tionally, devices 16a-167, such as VCR 16c¢, on a control area
network 12 may communicate with one or more devices on
either the UPnP network 18a or the JINI network 20a.



US 9,160,625 B2

11

III. Dynamic Device Discovery

According to the present invention, one or more devices
16a-16n, user interface devices 14, and/or master controllers
40 may be configured to handle dynamic device discovery
within control system 10. The present invention provides for
one or more devices 16a-16n to be dynamically added,
updated or removed within control system 10, prior to or
during its operation. As an example, a developer using the
present invention may write or utilize generic code to control
any brand of VCR. Although the underlying control mecha-
nisms for the different types and brands of VCRs may be
fundamentally different, the functionality (e.g., play, stop,
pause) is generally common between VCRs. Thus, the actual
underlying control mechanisms for the physical device may
be abstracted functionally through the use ofthe generic code.
According to one embodiment of the present invention, a
physical device is associated with an application device. The
underlying application device is dynamically associated upon
the detection of a new physical device based on the charac-
teristics of that device. This association may be accomplished
without underlying changes to the generic code. The generic
code is also referred to as the “glue code.” In another embodi-
ment, application device is dynamically associated a virtual
device 16a-16n which represents one or more physical
devices 16a-16n.

Referring to FIGS. 2 and 7, a control program development
application 41 provides user interfaces for the development of
a control program. In one embodiment, the control program is
a NetLinx program. Within the NetLinx program, the user
defines invocations to the Load_Duet_Module ( ) method.
The method parameters include an application device identi-
fier, a physical device identifier and a list of properties (name/
value pairs). The control program utilizes an application
device to direct all control requests for a device 16a-167. The
physical device identifier is used by DUET Object 66 to
create NetLinx device class 68 objects to communicate with
device 16a-16n. The list of properties (name/value pairs)
describe the module to be loaded. These properties include,
but are not limited to, Device-Make, Device-Model, Device-
SDKClass and Device-Revision. The control program devel-
opment application 41 may transfer NetLinx program 48a to
master controller 40. The control program development
application 41 may also transfer any corresponding DUET
and SNAPI modules to one or more Java libraries 50 and 52.
In one embodiment, such transfers are stored on a flash disk of
master controller 40.

During run-time execution of master controller 40,
NetLinx interpreter 42 invokes one or more Load_
Duet_Module () methods within NetLinx program 48a using
Java native interface (JNI) within device access 61. Device
Access 61 searches one or more Java libraries 50 and 52 foran
OSGi bundle which best matches the properties supplied as a
parameter to the Load_Duet_Module () method. If a match is
found, device access 61 instantiates the corresponding DUET
object 66 and SNAPI object 62 using the matching OSGi
bundle. The DUET object 66 then creates NetLinx device
class 68 object based on the physical device identifier sup-
plied as a parameter to the Load_Duet_Module ( ) method.
The NetLinx device class 68 object communicates via com-
munication paths 86 and 88, as shown in FIGS. 3 and 4, with
physical device 16a-16% using an appropriate protocol for
that device. The SNAPI object 62 creates one or more
NetLinx device class 64 objects based on the virtual device
identifier supplied as a parameter to the Load_Duet_Module
() method. NetLinx device class 64 object communicates via

10

15

20

25

30

35

40

45

50

55

60

65

12

communication paths 82 and 84, as shown in FIGS. 3 and 4,
with the NetLinx Interpreter 42 running Netlinx program
48a.

Referring to FIG. 7, a block diagram illustrating the com-
ponents of a dynamic device detection application according
to an embodiment of the present invention is shown. As pre-
viously mentioned, control program development application
41 provides user interfaces for the development of a control
program. In one embodiment, within a NetLinx program, the
user defines invocations to the Dynamic_Polled_Port ( )
method to specify one or more serial ports to be polled for
dynamic serial devices 16a-16n. The user may also define
invocations to the Dynamic_Application_Device ( ) method
to specify any device interfaces to be used within the control
application for each application interface. For serial devices
in which the user knows what serial port on master controller
40 the serial device 16a-167 will be connected to, the user can
define an invocation to the Static_Port_Binding () method to
specify binding an application device to the physical device
via the specified serial port. The control program develop-
ment application 41 may transfer NetLinx program 48a to
master controller 40. In one embodiment, NetLinx program
484 is stored on a flash disk of master controller 40.

During run-time execution of master controller 40,
NetLinx interpreter 42 invokes one or more Dynamic_
Polled_Port () methods within NetLinx program 48a using
JNI within dynamic device detection application 165. This
results in the serial port being added to polled serial devices
database 233. NetlLinx Interpreter 42 invokes one or more
Dynamic_Application_Device ( ) methods within NetLinx
program 48a using JNI within device access 61. This results
in the creation of one or more dynamic application device
objects which are then added to application device database
231. The dynamic application device objects may include the
parameter information provided as a parameter to the
Dynamic_Application_Device ( ) method. NetLinx Inter-
preter 42 invokes one or more Static_Port_Binding ( ) meth-
ods within NetLinx program 48« using JNI within device
access 61. This results in the creation of a dynamic applica-
tion device object which is added to application device data-
base 231. A corresponding shell dynamic physical device is
also added to device database 230. The shell dynamic physi-
cal device includes the physical device identifier provided as
a parameter to the Static_Port_Binding ( ) method and acts as
a placeholder for the binding.

Serial device detector 166 may be configured to periodi-
cally loop through polled serial device database 161, transmit
apoll request to the polled serial devices and to listen for poll
responses. [P device detector 167 may similarly be config-
ured to listen for IP devices discovered on IP sockets. In one
embodiment, this is accomplished using a Multicast UDP
address.

Binding Application 163 provides user interfaces for man-
aging bindings between dynamic application devices and
physical devices 16a-16z. Binding application 163 may be
configured to request that dynamic device detection applica-
tion 165 retrieve information from application device data-
base 231 and device database 230.

Binding registry 162 is a persistent disk storage of the
current binding information. In one embodiment, the binding
registry 162 contains which dynamic application devices that
are bound to dynamic physical devices. Thereby, upon the
reboot of master controller 40, the binding settings provided
by the user through the binding application 163 will not be
lost.

Transfer application 164 provides an interface for users to
upload DUET modules onto master controller 40, delete



US 9,160,625 B2

13

modules from master controller 40 and to retrieve existing
modules from master controller. An unbound portion of the
Java Libraries may be used to prevent conflicts with any
running/bound DUET modules and their associated DUET
objects 66.

When a physical device is discovered by the dynamic
device detection application 165, its beacon information
along with the physical device discovery location (e.g., the IP
address or the serial port) are used to add the dynamic physi-
cal device to device database 230. Based on the current bind-
ing settings, dynamic device detection application 165 deter-
mines whether a DUET Object 66 should be instantiated.

When dynamic device detection application 165 deter-
mines thata DUET object 66 should be instantiated, either by
user interaction from binding application 163 or by discovery
of'a new dynamic physical device having a pre-existing bind-
ing provided by binding registry 162, the information con-
tained within the bound dynamic application device and
dynamic physical device are used to invoke methods within
the device access object 61 to create a DUET Object 66 and its
associated SNAPI object 62. If a pre-existing DUET module
was destroyed, then a method is invoked within device access
61 to destroy the existing the DUET object 66 and its associ-
ated SNAPI object 62.

Upon the request to create a DUET Object 66 from
dynamic device detection application 165, device access 61
searches one or more Java libraries 50 and 52 for an appro-
priate DUET module which best matches the properties origi-
nating from the dynamic application device and dynamic
physical device objects. If a matching DUET module is
found, device access 61 instantiates a corresponding DUET
object 66 based on the DUET module. Device Access 61 may
omit the search step if the user has specified a specific DUET
module to be used via the binding application. In this case, the
search process is ignored and device access 61 instantiates a
DUET object 66 based on the specified DUET module.

Referring to FIG. 8A, a flow chart illustrating dynamic
device processing according to one possible embodiment of
the present invention is shown. As shown at block 200,
dynamic device detection occurs within control system 10.
Device detection is discussed in detail with respect to FIGS.
8B and 8C below. As generally shown at blocks 174-190,
upon detection of a new device 16a-16r within control sys-
tem 10, an application device is associated with device 16a-
16n.

The information contained in an application device is used
to instantiate a SNAPI object 62. All control requests are then
made to the SNAPI object 62, rather than the physical device
164-16n. A DUET module is used to instantiate a DUET
object 66 which provides services to translate between a set of
device specific API calls and the proprietary protocol of the
device 16a-167, thereby hiding the proprietary protocol from
the user.

DUET object 66 represents the detected device 16a-16x.
Optionally, the application device and DUET module may be
used to instantiate SNAPI object 62 and DUET object 66 after
the application device is associated. Associating an applica-
tion device with a physical device is also known as “binding.”
As shown at blocks 190 and 180, the newly detected device
16a-167 may either be manually or automatically bound.

SNAPI objects 62 are used as control interfaces for devices
16a-167. Control requests for devices 16a-16# are processed
by its corresponding SNAPI objects 62. Thereby, a device
16a-16% (e.g., the “physical device”) is abstracted by its cor-
responding SNAPI objects 62. Any technique may be used to
dynamically associate application device with new devices
16a-167. According to the present invention, binding may

10

15

20

25

30

35

40

45

50

55

60

65

14

include, but is not limited to, static binding and run-time
binding. Static binding is known as program defined binding
and dynamic binding is known as run-time defined binding.
The control program may be any program capable of control-
ling the new device 16a-16% in a dynamic device environ-
ment. According to the present invention, the control program
for a new device 16a-16» may include, but is not limited to, a
DUET module.

Under static binding, the port (e.g., a serial or IR port) to be
used for device 16a-167 is predefined. The device 16a-16n
actually to be connected to that port is not required to be
specified. Instead, the device 16a-16# on that port is dynami-
cally detected at run-time and then bound to the appropriate
application device. Static binding may be used to hardcode
the port to be used for a device without having to specify the
actual manufacturer or brand of the device.

Under dynamic binding, an application device and its asso-
ciated classes are predefined. The port that the device 16a-16n
is bound to is not required to be specified. Instead, new
devices 16a-16n are bound to the appropriate application
devices at run-time. Devices 16a-16» may be bound either
manually or automatically as they are detected on the control
system 10. Any user interface may be used to manually bind
an application device with a new device 16a-16n. In one
embodiment, binding is manually specified using a web
browser in communication with a web server application
hosted on master controller 10, as generally shown in FIGS.
9-14. Manual binding may be used in addition to automated
binding. For instance, manual binding may be used to modify
a device 16a-16n that was automatically bound upon detec-
tion. Additionally, some devices 16a-16» may be automati-
cally bound while other devices 16a-16» may be manually
bound. For certain devices 16a-167, dynamic binding may be
preferable over manual binding. For instance, dynamic bind-
ing is the preferred binding option for IP devices 16a-167 due
to the dynamic nature of their IP addresses.

Numerous methods of detection may be used to detect
devices 16a-16# that are added to control system 10. Accord-
ing to the present invention, the methods of detection include,
but are not limited to, dynamic device discovery protocol
(DDDP) and user defined methods. A user defined method
may be defined by a user using any means including the use of
a user interface. Any user interface may be used to manually
define a method of detection. In one embodiment, a method of
detection is manually specified using a web browser in com-
munication with a web server application (e.g., a Java servlet)
hosted on master controller 10, as generally shown in FIGS.
9-14. According to the present invention, new device detec-
tion may use, but is not limited to, an external discovery
protocol manager (e.g., UPNP), a multicast reception of a
dynamic device beacon, or receipt of a beacon response on an
application specified list of serial devices.

Any communication protocol or interface may be used
within the scope of the present invention for device detection.
In one embodiment, dynamic physical devices are detected
over serial interfaces and IP interfaces using DDDP. Dynamic
device detection over IP interfaces may be configured to
utilize the network’s higher layers of multicast to broadcast
the existence of a new device 16a-16#. Serial devices may be
configured to utilize DDDP or any other protocol, such as
fixed protocol that may be incompatible with DDDP.
Dynamic device detection over serial interfaces may utilize
periodic polling of devices. In response to a poll request,
devices 16a-167 may be configured to broadcast their exist-
ence upon their addition to control system 10. According to



US 9,160,625 B2

15

the present invention, the interfaces or ports (e.g., a NetLinx
interface or a serial port) to be polled may be predefined or
variable.

An application device may be associated with a particular
device type using various techniques. In one possible
embodiment, each device type corresponds to a Java interface
within a DUET device software development kit (SDK). A
user specifies the device type of a particular application
device by providing a particular SDK class name.

According to the present invention, dynamic IP device
detection may utilize sockets for communication between
devices 16a-16n and master controllers 40. In one possible
embodiment, a multicast UDP socket having a predefined
multicast group and port (e.g., port 9131) is utilized. A lis-
tener is used to listen for dynamic device beacons that are sent
by devices 16a-167 and dynamic device bindings that are sent
by master controller 40 to notify other masters controllers 40
in a control area network 12 of the ownership of a dynamic
device that has previously entered the system. Upon the
dynamic binding of device 16a-16% to an application device,
a dynamic device binding is transmitted on the multicast
group to notify all other master controllers 40 in control
system 10 that the device 16a-16» has been bound. Con-
versely, when device 16a-16# is unbound, a notification is
transmitted on the multicast group to notify all other master
controllers 40 in control system that the device 16a-16# has
been unbound.

Referring to FIG. 8B, a flow chart illustrating dynamic [P
device processing according to one possible embodiment of
the present invention is shown. As shown at block 202, a
dynamic device beacon datagram packet is received. Accord-
ing to the present invention, devices 16a-16# are configured
to transmit one or more device beacon messages. Transmis-
sion of device beacon message may be configured to occur,
without limitation, (i) when the device initially starts up, such
as when the device is initially booted or rebooted; (ii) upon a
determination that the device connection has been lost, such
as upon the reboot of the master control, the device being
unbound, or a network communication failure; (iii) at peri-
odic predefined or variable intervals; or (iv) by any other
reasonable means. The device beacon message may include,
but is not limited to, (i) information that is useful to connect
the device, such as the dynamic or static IP address, and the
port; (i1) a universal unique identifier for the device (UUID);
and/or (iii) information specific to the type of device. The
device UUID is a unique identifier to distinguish one device
from every other device. In one embodiment, the UUID for IP
devices is the MAC 1D, and the UUID for serial devices is
uniquely assigned by the manufacturer of the device. If a
UUID is not supplied by the manufacturer of a serial device,
then the physical NetLinx device address of the associated
serial portto which the device is connected may be used as the
UUID (e.g., 5001:1:0). Information specific to the type of
device includes, but is not limited to, the SDK interface class
name, the DUET module match criteria, and/or the make,
model and revision number of the device 16a-16n.

As shown at block 204, a search is performed for the new
device within device database 230. The new device is com-
pared against the existing entries in device database 230, at
block 206. As shown at block 208, the new device identifier
and the IP address of the new device may not exist in device
database 230. For instance, when a new device is added to a
control area network 12 for the first time an entry will not exist
in device database 230. If this occurs, the device is added to
device database 230 as an unbound device.

As shown at blocks 210 and 212, the new device identifier
may not exist in device database 230, but another device may

10

15

20

25

30

35

40

45

50

55

60

65

16

already exist with the new device’s IP address. For instance,
restarting the DHCP server may result in a previously
assigned IP address being reassigned to another device. Use
of static IP addresses may similarly result in an IP address
conflict. If this occurs, the device entry is removed and the
new device is added to device database 230. Additionally, if
the conflicting device was bound, the DUET objects 66 and
SNAPI objects 62 corresponding to the conflicting device are
destroyed.

As shown at blocks 214 and 216, the new device identifier
and the IP address of the new device may exist in device
database 230. If the device information in device database
230 does not match, then the device information is updated in
device database 230. For instance, an update to the firmware
of'the new device may result in its device information having
anew revision number. In this situation, the new device infor-
mation is updated in device database 230, and DUET object
66 and SNAPI object 62 are instantiated.

As shown in block 2186, it is possible that the new device is
bound, and no DUET objects 66 and SNAPI objects 62 have
been created for the new device. In one embodiment, at star-
tup, DUET objects 66 and SNAPI objects 62 are not auto-
matically instantiated for bound IP devices. Instead, it is
assumed that a device beacon message will be received from
the new device 164-16n to initiate the creation of DUET
objects 66 and SNAPI objects 62 corresponding to the new
device. For instance, when a master controller 10 is rebooted,
it may take several minutes for the new device to timeout on
its socket connection. When a device beacon message is
received by the master controller 10, a DUET object 66 and
SNAPI object 62 are created for the new device. If the new
device is bound and DUET objects 66 and SNAPI objects 62
already exist for the new device 16a-167, then it is assumed
that the DUET object 66 will re-connect to device 16a-167 if
it looses a connection.

As shown at blocks 218 and 220, the new device identifier
may exist in device database 230, but the new device’s IP
address does not match the device database entry. For
instance, restarting the DHCP server may cause the new
device to be reassigned a new IP address. The new IP address
is updated in device database 230 if it does not conflict with
any other entry.

Embodiments of the present invention may include, but art
not limited to, (i) updating existing device database entries
based on the device beacon message content to dynamically
update the IP address and other device information; (ii) pre-
venting IP address conflicts by destroying old device infor-
mation when a new device beacon message is received that
matches an existing IP address; and (iii) preventing thrashing
of DUET module loads and unloads where two or more
devices have conflicting IP addresses.

Referring to FIG. 8C, a flow chart illustrating dynamic
serial device processing according to one possible embodi-
ment of the present invention is shown. Serial ports are polled
for new serial device connections which upon reply are added
to device database 230. The present invention may be config-
ured to poll all serial ports in control area network 12 or a
subset thereof. In one embodiment, the serial ports to be
polled are defined using a NetLinx language subroutine,
DYNAMIC_POLLED_PORT (DEV netlinxDevice). A Seri-
alDevice object is then created for each device that is defined
by the NetLinx language subroutine. The default communi-
cation settings for each serial port is predefined as 9600 baud,
8 bits, no parity and 1 stop bit. However, other possible
communication settings are possible within the scope of the
present invention.



US 9,160,625 B2

17

As shown at block 252, serial devices are periodically
polled for any new devices by transmitting a poll message
over the corresponding serial ports. The period between such
polling may be predefined. New devices respond by sending
a new device beacon message which is received by master
controller 10, as shown at block 252. The device beacon
message contains device specific information, such as the
device ID and other information relating to the device’s
DUET module (e.g., SDK class and match criteria). As shown
atblock 256, device database 230 is then searched for the new
device. The new device is compared against the existing
entries in device database 230, at block 256. As shown at
block 258, the new device identifier and the serial port of the
new device may not exist in device database 230. For
instance, when a new serial device is added to a control area
network 12 for the first time an entry will not exist in device
database 230. If this occurs, the device is added to device
database 230 as an unbound device.

As shown at blocks 260 and 262, the new device identifier
may already exist in device database 230 for another device.
Ifthis occurs, the device entry is removed and the new device
is added to device database 230. Additionally, if the conflict-
ing device was bound, the DUET objects 66 and SNAPI
objects 62 associated with the conflicting device are
destroyed.

As shown at blocks 264 and 266, the new device identifier
and serial port of the new device may exist in device database
230. If the device information in device database 230 does not
match, then the device information is updated in device data-
base 230. For instance, an update to the firmware of the new
device may result in its device information having a new
revision number. In this situation, the new device information
is updated in device database 230, and DUET object 66 and
SNAPI object 62 are created from an appropriate DUET
module.

As shown in block 266, it is possible that the new device is
bound, and a corresponding DUET object 66 and SNAPI
object 62 have not been instantiated for the new device. Ifthe
new device is bound and DUET object 66 and SNAPI object
62 already exist for the new device, then it is assumed that
DUET object 66 will re-connect to a device if it looses a
connection.

As shown at blocks 268 and 270, the new device identifier
may exist in device database 230, but the new device’s serial
port does not match the device database entry. If this occurs,
the new serial port is updated in device database 230.

The present invention provides APIs to access both the
runtime application device and device database as well as
binding information. These APIs may be used by a binding
application. In one embodiment, the binding application is a
Java servlet. The APIs include, but are not limited to, retriev-
ing application device information including the current
binding state and if a DUET object 66 and SNAPI object 62
are instantiated for the binding; retrieving the list of devices
16a-16% that are not yet bound to application devices (i.e.,
orphaned devices); binding an application device to a physi-
cal device; and unbinding an application device from its
physical device.

Referring to FIGS. 9-14, an exemplary user interface and
computer program for managing dynamic devices is shown.
As shown in FIG. 9, the Manage Other Devices user interface
300 may be used by a user to manually manage devices in
control area network 12. The Manage Other Devices user
interface 300 is displayed by selecting button 302.

Enable Auto Bind checkbox 308 allows a user to specify
whether new devices will be automatically bound. When
auto-binding is enabled, master controller 40 will automati-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

cally attempt to connect newly discovered physical devices
with associated application devices. In one non-limiting
embodiment, a newly discovered device and a single entry in
application device database 231 is bound where there is a
one-to-one correlation therebetween. For example, if the
application has only one VCR defined and a VCR is detected
in the system, auto-bind will automatically bind the VCR
device to the VCR application device. When Enable Auto
Bind checkbox 308 is not selected, no auto-bind activity will
take place and the binding of newly discovered devices may
be manually configured. Enable Subnet Match checkbox 310
allows a user to specify whether IP devices should only be
detected or discovered if they are on the same IP subnet as the
master controller 40. Purge Bound Modules on Reset check-
box 312 allows a user to specify whether all modules should
be deleted from the bound directory upon the next reboot.
During the binding process, the associated DUET modules
for a device are copied from the unbound directory into a
protected bound area. Due to the dynamic nature of Java class
loading, it is not safe to delete a running jar file. Purge Bound
Modules on Reset checkbox 312 is provided to allow a user
with the capability to remove existing modules upon reboot,
thereby forcing a re-acquisition of the module at bind time.
Optionally, upon reboot, the Purge Bound Modules on Reset
checkbox 312 selection will be cleared. The Save Settings
button 314 allows a user to save the current selected checkbox
values to master controller 40.

Textarea 318 displays the DUET modules currently loaded
on master controller 40. The Manage Other Devices user
interface 300 may be used to delete, add and retrieve DUET
modules. For instance, buttons 326 and 320 may be selected
to add and delete DUET modules, respectively.

As shown in FIG. 10, the Manage Device Bindings user
interface 330 may be used by a user to configure application
defined SNAPI objects 62 with discovered devices 16a-167in
control area network 12. The Manage Device Bindings user
interface 330 is displayed by selecting button 304. A list of all
application defined devices 16a-16% including the defined
“Friendly Name,” the DUET virtual DPS (device:port:sys-
tem) and the associated DUET Device SDK class indicating
the type of the device.

Application devices include, but are not limited to, static
application devices and dynamic application devices. Static
application devices specify an application device and its asso-
ciated Device SDK class type as well as a NetLinx physical
device port that the application device is associated with (i.e.,
statically bound). Dynamic application devices simply
specify the application device and its associated Device SDK
with no association to a physical port. Binding of an applica-
tion device to a physical device/port will occur at run-time
either via auto-bind or manual binding. Application devices
that have a bound physical device will display the physical
device ID in the Physical Device column of table 332. If a
corresponding DUET object has been instantiated to commu-
nicate with the device, property information of device will be
displayed in a mouse-over dialog 338 when the cursor hovers
over the physical device ID.

The entries in table 332 may have a button associated with
it. Static application devices may have an associated Release
button 336. Dynamic application devices may have an asso-
ciated Bind button 334 or Unbind button (not shown). A static
application device that has not detected a physical device
attached to the predefined port will not have a button associ-
ated with its entry. If a physical device has been detected and
the SNAPI object 62 and DUET object 66 have been instan-
tiated, then Release button 336 is displayed. Upon selection
of Release button 336, the corresponding SNAPI object 62



US 9,160,625 B2

19
and DUET object 66 are destroyed and the firmware will
return to detecting physical devices attached to the port.

Dynamic application devices that have been bound will
display an Unbind button (not shown). Upon selection of the
Unbind button, any corresponding SNAPI object 62 and
DUET object 66 will be destroyed and the association
between the application device and the physical device is
removed. Dynamic application devices that have not been
bound to a physical device will display Bind button 334.
Upon selection of Bind button 334, a second level Manage
Device Bindings user interface 350 is displayed, as shown in
FIG. 11. The second level Manage Device Bindings user
interface 350 displays the available unbound physical devices
that match the application device’s Device SDK class type.

A user may select one of the available physical devices
shown in user interface 350 to bind with an application
device. Upon selection of Save button 356, a binding is cre-
ated and the master controller 40 locates the appropriate
DUET module driver. Once a driver is found, the DUET
module is used to instantiate DUET object 66, and the physi-
cal device is associated with the specified application device.
Upon selection of Cancel button 358, the binding activity will
be aborted. A mouse-over dialog is provided to display the
properties in popup dialog 360 that are associated with a
discovered physical device.

As shown in FIG. 12, the User Defined Device user inter-
face 370 may be used by a user to provide dynamic device
support for devices 16a-16n that do not natively support
dynamic device processing. The User Defined Device user
interface 370 is displayed by selecting button 306. Devices
16a-16n may be added or removed. Devices 16a-167 that
have been previously defined are shown in areca 394 and may
be removed by selecting button 396. Area 376 includes
dynamic device properties as defined in the table 1 below.

TABLE 1

Field Description

Address Address field 378 may be used to specify the address of
the NetLinx master port DPS (device:port:system) value
or IP address (#.##.#) of device 16a-16n.

Device-Type drop-down menu field 380 may be used to
specify the connectivity type of device (e.g., IR, IP,
serial, relay, other).

SDK-Class drop-down menu field 382 may be used to
specify the SDK class type of the device.

GUID field 384 may be used to specify a manufacturer
specified ID of the manufacturer’s device. Either

the GUID field or the Make and Model fields must be
specified.

Make field 386 may be used to specify the manufacturer
name. Either the GUID field or the Make and Model
fields must be specified.

Model field 388 may be used to specify the manufacturer
model. Either the GUID field or the Make and Model
fields must be specified.

Revision field 390 may be used to specify a device
firmware revision. This value automatically defaults

to 1.0.0.

Properties Add button 392 and fields may be used to
input additional name/value pairs of properties to

be associated with the device.

Device-Type

SDK-Class

GUID

Make

Model

Revision

Properties
Add

Upon selection of Add button 372, the user defined device
is added to physical device database 230 and is displayed in
area 394. Upon selection of Cancel button 374, the creation of
a user defined device is aborted.

As shown in FIG. 13, the View Discovered Devices user
interface 400 may be used by a user to display all of the
dynamic devices 16a-167 that have been discovered in the
control system 10. The View Discovered Devices user inter-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

face 400 is displayed by selecting button 306. A mouse-over
display area 408 displays properties associated with a device
16a-16x. If the device is bound to an application device, the
associated application device’s “friendly name” will be dis-
played under the Binding column of table 404. The Module
Available column of table 404 indicates if a DUET module is
available on the system for the physical device.

For each device 16a-167, Search button 406 is provided to
initiate a search for compatible modules. Optionally, if Mod-
ule Search via Internet button 316 has been previously
selected, the search will include querying an online database
(e.g., an AMX online database) for a compatible module
based on the device’s properties. If the device specified a
URL in its dynamic device discovery beacon, a file will be
retrieved from the URL either over the Internet or from the
physical device itself, provided the device has an onboard
HTTP or FTP server. If Module Search via Internet button
316 has not previously been selected, then modules will be
retrieved from the manufacturer’s device. Modules that are
retrieved from the Internet or from the manufacturer’s device
will be placed into an unbound directory and will automati-
cally overwrite any existing module of the same name.

As shown in FIG. 14, the Select Device Module user inter-
face 410 may be used by a user to display each module along
with a calculated match value. The Manage Device Bindings
user interface 330 is displayed by selecting Search button 406
after a list of all compatible modules is compiled. The higher
the match value, the better the match between the DUET
module’s properties and the physical device’s properties. A
mouse-over display area 420 for each module lists the prop-
erties associated with the module. A user may select the
DUET module to be associated with device 16a-16» from the
list of compatible modules displayed in area 418. Upon selec-
tion of Save button 412, the selected DUET module is asso-
ciated with device 16a-16x. In one embodiment, the associa-
tion does not affect any currently running DUET module
associated with device 16a-16%, but, instead, will become
effective after the next system reboot. Upon selection of Can-
cel button 414, the association of a DUET module with device
16a-167 is aborted.

Referring to FIGS. 9-14, the exemplary user interface and
computer program for managing dynamic devices as shown
manages the application devices in the system along with
their binding state. This includes the current application
defined application devices as well as any pre-existing appli-
cation devices that were bound but no longer exist in the
application’s list. The user interface may be used to bind
application devices to unbound physical devices. The user
interface provides a user with the ability to manage bindings.
Management of bindings includes, but is not limited to, ini-
tiating a binding and unbinding existing bindings. If an exist-
ing binding is unbound and the associated application device
is no longer in the list of valid application devices, then the
application device will be automatically removed from the
system. If an existing binding is deleted, the associated physi-
cal device will not automatically be deleted. Unbound physi-
cal devices are lost on reboot, as it is expected that they will be
re-acquired. The user interface to delete a physical device
allows for re-acquisition of an application device for a serial
device based on the polling model.

DYNAMIC__APPLICATION_ DEVICE( DEV duetVirtualDevice,
char[ ] deviceType, char| ] friendlyName)

The DYNAMIC_APPLICATION_DEVICE NetLinx API
causes an application device (41000-42000) to be added to



US 9,160,625 B2

21

the application device database 231. The duetVirtualDevice
values will be displayed to the user on a user interface of the
binding application. The deviceType will be used to ensure a
valid link between an application device and a physical
device. The friendlyName string is used for display purposes
by the binding application.

DYNAMIC_POLLED_PORT (DEV NetlinxDevice)

The DYNAMIC_POLLED_PORT NetLinx API causes a
NetLinx serial device to be added to the polled serial devices
233 that are polled/listened for new dynamic devices.

STATIC__PORT_BINDING( DEV duetVirtualDevice, DEV
netlinxDevice, char[ ] deviceType, char[ ] friendlyName,
integer polled)

The STATIC_PORT_BINDING NetLinx API causes a per-
manent binding to be established between the designated
DUET virtual device and the designated Netlinx Device and
entries to be added to the application device database 231 and
physical device database 230 (shell placeholder). The device-
Type field may be used to ensure a valid device type is
attached to the physical port on the master. The polled vari-
able specifies if the designated netlinxDevice must be polled
for devices (e.g., serial devices) or not (e.g., IR devices). Valid
values are DUET_DEV_NOT_POLLED (0) and
DUET_DEV_POLLED (1).

As previously mentioned, serial ports are polled for new
serial devices to control system 10. According to the present
invention, the serial poll request message may be of any form
or content. In one embodiment, the serial poll request mes-
sage is an ASCII string consisting of:

“AMX” <cr>

Serial ports attached to the polled serial ports are config-
ured to respond to a poll request message with a dynamic
device beacon message. According to the present invention,
the dynamic device beacon message may be of any form or
content.

In one embodiment, the dynamic device beacon message is
an ASCII string containing information specific to the
attached serial physical device. The content of the ASCII
string is packed together to minimize the data size to support
devices with minimum memory or processing. The ASCII
string includes a prefix (e.g., “AMXB”) and one or more
non-order dependent name-value pairs separated by ‘<* and
>

AMXB<name=value><name=value> . . . <cr>

Certain name-value pairs may be required. In one embodi-
ment, Device-UUID and Device-SDK Class name-value pairs
are required. The Device-UUID is a unique identifier to dis-
tinguish the physical device from every other device. For IP
devices this will most likely be the MAC address. For serial
devices, it is the responsibility of the manufacturer to create a
unique value, for example, a combination of the manufacturer
name and serial number. The Device-SDKClass is the class
name that the associated DUET module extends. This is a
fully qualified class name including package name. For
example, a fully qualified VCR class name may be
“com.amx.duet.devicesdk. VCR.”

Dynamic IP devices are configured to report the IP address
and IP port value which will be used for communication
between the DUET object 66 the dynamic IP device. A com-
bination of either Device-GUID or Device-Make and Device-
Model may also be supplied. These Device-GUID, Device-
Make and Device-Model name-value pairs may be used to

10

15

20

25

30

35

40

45

50

55

60

65

22

determine the proper DUET Module driver that should be
used to service the physical device. The Device-GUID is a
unique identifier designating a specific manufacturers device.
For example, the Device-GUID may identify a particular type
of Sony VCR. All Sony VCRs of this type would have the
same Device-GUID. Similarly, the Device-Make and Device-
Model values delineate a particular manufacturer’s device.

The dynamic device beacon message may also include, but
is not limited to, a Device-Revision and Bundle-Version.
Device-Revision specifies a particular firmware version that
is running in the physical device. Bundle-Version specifies
DUET Module version number required to interface with the
physical device.

In one embodiment, the end of the device beacon message
ASCII string is designated with a carriage-return (‘\r”). For
example, dynamic device beacon message may resemble the
following without limitation:

AMXB<Device-UUID=1F:35:B9:00:41:AD>
<Device-SDKClass=com.amx.duet.devicesdk. VCR>
Device-GUID=SONY137fb79><IP-Address=192.168.13.54>
<IP-Port=2000><cr>

Or

AMXB<Device-UUID=YAMAHAXB1-3468901>
<Device-SDKClass=com.amx.duet.devicesdk.Receiver>
Device-Make=Yamaha><Device-Model=XB1>
<Device-Revision=v1.0.3><cr>

The name-value pairs contained within the beacon string
(“<xxx=yyy>") may be added to the Java Properties object
that is associated with the Java NetLinxDevice object and
ultimately the DUET object 66 that controls the device.

A dynamic device binding notify message may be trans-
mitted by any means. In one embodiment, a dynamic device
binding notify message is sent via UDP to multicast address
239.255.250.250 on port 9131 by a master controller 40 when
an IP physical device is bound and the master controller 40
takes ownership ofthe device. According to the present inven-
tion, the dynamic device binding notify message may be of
any form or content. In one embodiment, the dynamic device
binding notify message is an ASCII string that is identical to
the beacon with the exception of the prefix, which is
“AMXL.,” indicating a device is bound (or locked).

The present invention thus includes a computer program
which may be hosted on a storage medium and includes
instructions which perform the processes set forth in the
present specification. The storage medium can include, but is
not limited to, any type of disk including floppy disks, optical
disks, CD-ROMs, magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, flash memory, magnetic or optical
cards, or any type of media suitable for storing electronic
instructions.

Obviously, many other modifications and variations of the
present invention are possible in light of the above teachings.
The specific embodiments discussed herein are merely illus-
trative, and are not meant to limit the scope of the present
invention in any manner. It is therefore to be understood that
within the scope of the disclosed concept, the invention may
be practiced otherwise than as specifically described.

Alternate Embodiments

In accordance with disclosed embodiments, a discovery
protocol mechanism is provided that allows a control system
device, such as a server, to dynamically bind to multiple
master controllers. The disclosed discovery protocol mecha-
nism includes a dynamic application device (DAD), a
dynamic physical device (DPD), and a master controller. The
DAD is defined in a controller program as a virtual device.



US 9,160,625 B2

23

The DPD comprises a physical device transmitting a discov-
ery protocol beacon. A master controller comprises a control
system master that has a DAD defined as a certain device type,
e.g., a camera. A master controller may be implemented such
that various control system devices and controlled devices
may be communicatively coupled thereto.

FIG. 15 is a diagrammatic representation of a control sys-
tem 1500 configuration that provides for device control and
monitoring and in which a dynamic device discovery routine
implemented in accordance with disclosed embodiments
may be deployed. A controlled device development IDE 1510
may be used by device manufactures, e.g., a manufacturer of
controlled devices 1570-1572, to develop a Module for the
corresponding controlled device. Alternatively, the develop-
ment IDE 1510 may be used by manufacturers or developers
of control system devices. The device Module may be imple-
mented as computer-executable or computer-readable
instructions tangibly embodied on a computer-readable
medium. A device, such as a camera, tuner, or any other
device that may be monitored, controlled, or otherwise
manipulated via the control system, that is to be deployed in
a control system is referred to herein as a controlled device. A
controlled device has a corresponding device Module that
facilitates deployment and operation of the controlled device
within the control system. An integration IDE 1530 allows
device dealers to easily integrate multiple Modules and their
associated controlled devices into a single control system
1500. Modules integrated with integration IDE 1530 may be
loaded onto a master controller 1540 to enable control of the
corresponding devices communicatively coupled with the
master controller 1540 in the control system 1500. A remote
monitoring system (RMS) server 1560 may feature a resource
management suite that provides remote monitoring and con-
trol of various controlled devices 1570 integrated in control
system 1500. The RMS server 1560 may be communicatively
coupled, e.g., via a network 1550, with the master controller
1540 and communicate with RMS agents installed on the
master controller 1540. The RMS enables administrators to
gather status of controlled devices and to control the devices
participating in the control system deployed via the master
controller 1540.

Contemporary discovery protocols provide mechanisms
for a dynamic physical device to be automatically detected
and bound to a master controller 1540. For example, FIG. 16
depicts a diagrammatic representation 1600 of a contempo-
rary discovery and binding mechanism. Dynamic physical
devices 1610-1611 may multicast a respective beacon 1620-
1621 that facilitates discovery of the DPDs 1610-1611 by a
respective master controller 1630-1631. To successfully dis-
cover the DPDs 1610-1611 and bind the DPDs to the master
controllers, a master controller must have a dynamic applica-
tion device that matches the device type of the DPD. For
example, assuming master controller 1630 is configured with
a DAD 1640 that matches the device type of DPD 1610,
master controller 1630 will recognize DPD 1610 on receipt of
the DPD’s beacon 1620. The master controller may then
dynamically bind DPD 1610 thereto. In a similar manner,
assuming master controller 1631 is configured with a DAD
1641 that matches the device type of DPD 1611, the master
controller 1631 will recognize DPD 1611 on receipt of the
DPD’s beacon 1621, and DPD 1611 is then dynamically
bound to the master controller 1631.

Once a DPD is bound to a master controller, the master
controller will load the DPD’s Module and establish commu-
nication with the DPD. The master controller then broadcasts
a discovery protocol binding notification message notifying
all other master controller that the DPD is no longer unbound.

10

15

20

25

30

35

40

45

50

55

60

65

24

All master controllers receiving the discovery protocol bind-
ing notification message must remove the DPD from their
unbound DPD List.

FIG. 17 is a diagrammatic representation of a signaling
flow 1700 of a contemporary device discovery and static
binding routine. A DPD 1740 broadcasts a dynamic device
discovery protocol (DDDP) beacon on a multicast address
1750 (step 1702). Master controllers 1760-1761 may monitor
the multicast address for detection of a beacon. For illustra-
tive purposes, assume both master controllers 1760-1761
each have a DAD that matches the device type of DPD 1740.
Accordingly, master controller 1760, on detection of the bea-
con (step 1704), recognizes DPD 1740 and adds DPD 1740 to
an unbound DPD list maintained by master controller 1760
(step 1706). Likewise, master controller 1761, on detection of
the beacon (step 1708), recognizes DPD 1740 and adds DPD
1740 to an unbound DPD list maintained by master controller
1761 (step 1710).

A system integrator 1730 may access a master controller,
e.g., master controller 1760, via a web interface or other
suitable communication interface, to explicitly bind DPD
1740 to the correct master controller (step 1712), e.g., master
controller 1760 in the illustrative example. The master con-
troller 1760 may then load DPD’s 1740 Module (step 1714),
and thereafter initiate control and communication of the DPD
(step 1716). The master controller 1760 then broadcasts a
DPD binding notification on a multicast address (step 1718)
which is then detected by the master controller 1761 (step
1720). The master controller 1761 then removes DPD 1740
from the unbound DPD list maintained thereby (step 1722).

The discovery and static binding routine of FIG. 17
requires an administrator to make an explicit, manual choice
of which master controller a DPD is bound. Some mecha-
nisms provide an auto-bind option that facilitates a master
controller to automatically bind to any DPD which matches a
DAD maintained by the master controller. However, contem-
porary auto-bind mechanisms may cause catastrophic, unde-
fined results when multiple master controllers attempt to bind
to the same DPD. Accordingly, static bind mechanisms are
preferred in conventional systems when multiple master con-
trollers are listening to the same multicast address for a com-
mon DPD device type.

Conventional device discovery mechanisms are suitable
for devices that can only bind to one master. However, numer-
ous devices exist, such as control system servers including
RMS servers that must bind to multiple master controllers.

FIG. 18 depicts a diagrammatic representation 1800 of a
device discovery and binding mechanism implemented in
accordance with disclosed embodiments. Dynamic physical
devices 1810-1812 may multicast a respective beacon 1820-
1822 that facilitates discovery of the DPDs 1810-1812 by a
master controller 1830-1832. To successfully discover the
DPDs 1810-1812 and bind the DPDs to the master control-
lers, a master controller must have a dynamic application
device that matches the device type of the DPD. For example,
assuming master controller 1830 has a DAD 1840 that
matches the device type of DPD 1810, master controller 1830
will recognize DPD 1810 on receipt of the DPD’s 1810 bea-
con 1820. The master controller 1830 may then dynamically
bind DPD 1810 thereto. In a similar manner, assuming master
controller 1831 has a DAD 1841 that matches the device type
of DPD 1811, the master controller 1831 will recognize DPD
1811 on receipt of the DPD’s 1811 beacon 1821, and DPD
1811 is then dynamically bound to the master controller 1831.

In accordance with an embodiment, a discovery protocol
beacon is extended with an optional DPD device Type flag
that indicates if the DPD is a discovery protocol-compatible



US 9,160,625 B2

25

(DP) server. Thus, on receipt of the beacon, a master control-
ler may evaluate the beacon for the presence of the DPD
device Type flag. If the device Type Flag is present in the
beacon, the value of the flag indicates if the DPD is a DP
server. In the event the DPD is a DP server, the DP server may
be advantageously allowed to bind to multiple master con-
trollers. In the event that the device Type Flag is not included
in the beacon, the device is assumed to be a DP Device, and
binding of the DPD is performed according to the above
described mechanisms.

In the illustrative example, assume beacon 1822 transmit-
ted by DPD 1812 is an extended beacon including a device
Type Flag. Further assume that DPD 1812 comprises a DP
server, such as an RMS server. Accordingly, DPD 1812 may
set the beacon’s device Type flag to indicate DPD 1812 is a
DP server. Further assume that each of master controllers
1830-1832 have a DAD 1842 that matches the device type of
DPD 1812. In this instance, DPD 1812 is allowed to bind to
each of master controllers 1830-1832 that receive DPD’s
1812 beacon 1822.

To facilitate binding a server to multiple master controllers,
a master controller does not broadcast a binding notification
notifying other master controllers the DPD is no longer
unbound in the event a DP server is successfully bound to the
mater controller. Thus, multiple master controllers 1830-
1832 are allowed to bind to the same DP server 1812.

A master controller’s discovery protocol firmware may be
extended to allow an alternative auto-bind option for DP
devices and DP servers thereby allowing master controllers to
auto-bind to DP servers while still requiring a static bind
procedure to be performed with DP devices.

FIG. 19 depicts a diagrammatic representation of a signal-
ing flow 1900 of a device discovery and binding routine that
facilitates binding of a server to multiple masters in accor-
dance with an embodiment. In the illustrative example,
assume that master controllers 1970-1971 are implemented in
accordance with contemporary master controller configura-
tions and are not capable of recognizing a device Type Flag in
a DDDP beacon, and master controllers 1980-1981 are con-
figured according to the disclosed embodiments and are
capable of recognizing a device Type Flagina DDDP beacon.
Further assume that server 1950 is implemented according to
the disclosed embodiments and is adapted to transmit a
DDDP beacon including a device Type Flag that indicates
whether the device comprises a DP device or a DP server.

A DPD comprising a DP server 1950 transmits a DDDP
beacon that includes a device Type (DT) Flag to a multicast
address 1960 (step 1902). In the present example, the device
Type Flag is set to a value that indicates the DPD comprises a
DP server. Conventionally configured master controller 1970
detects the DDDP beacon at the multicast address (step 1904)
and adds the DPD to an unbound DPD list maintained by
master controller 1970 (step 1906). Likewise, conventionally
configured master controller 1971 detects the DDDP beacon
at the multicast address (step 1908) and adds the DPD to an
unbound DPD list maintained by master controller 1971 (step
1910).

Master controller 1980 detects the DDDP beacon at the
multicast address (step 1912). Master controller 1980 is con-
figured to recognize the DDDP device Type Flag of the
DDDP beacon and thus evaluates the DDDP beacon for the
device Type Flag. On detection of the DDDP device Type
Flag, master controller 1980 evaluates the value of the device
Type Flag and determines the device Type Flag indicates the
DPD device comprises a DP server. Accordingly, master con-
troller 1980 then loads a device Module for the DPD (step
1914), and may thereafter commence communication and

10

15

20

25

30

35

40

45

50

55

60

65

26

control of the DPD (step 1916). Likewise, master controller
1981 detects the DDDP beacon at the multicast address (step
1918). Master controller 1981 is configured to recognize the
DDDP device Type Flag of the DDDP beacon and thus evalu-
ates the DDDP beacon for the device Type Flag. On detection
of'the DDDP device Type Flag, master controller 1981 evalu-
ates the value of the device Type Flag and determines the
device Type Flag indicates the DPD device comprises a DP
server. Accordingly, master controller 1981 then loads a
device Module for the DPD (step 1920), and may thereafter
commence communication and control of the DPD (step
1922).

A system integrator 1940 may access a master controller,
e.g., master controller 1970, via a web interface or other
suitable communication interface, to explicitly bind the DP
server 1950 to the correct conventionally configured master
controller (step 1924), e.g., master controller 1970 in the
illustrative example. The master controller 1970 may then
load the DPD’s 1950 Module (step 1926), and thereafter
initiate control and communication of the DPD (step 1928).
The master controller 1970 then multicasts a DPD binding
notification (step 1930) which is then detected by the conven-
tionally configured master controller 1971 (step 1932). The
master controller 1971 may then remove DPD 1950 from the
unbound DPD list maintained thereby (step 1934).

Thus, conventionally configured master controllers 1970-
1971 add the DPD server to their unbound DPD list as they
would for any other DPD and thus still require a system
integrator to explicitly select the master controller to bind the
DPD to a particular master controller. Master controllers
implemented in accordance with disclosed embodiments are
advantageously able to automatically load a DPD module for
a DP server and initiate communication with the server with-
out administrator intervention.

FIG. 20 is a flowchart 2000 that depicts a device discovery
and binding routine that facilitates binding a server to mul-
tiple masters in accordance with an embodiment. The pro-
cessing steps of FIG. 20 may be implemented as computer-
executable instructions executable by a processing system,
such as master controller 1980 depicted in FIG. 19.

The discovery and binding routine is invoked (step 2002),
and the master controller 1980 monitors the multicast address
onwhich DDDP beacons are broadcast (step 2004). On detec-
tion of a DDDP beacon (step 2006), the master controller
adds the DPD to the unbound DPD list (step 2008). An evalu-
ation is then made to determine if the beacon includes a
Device Type Flag (step 2010) in accordance with the dis-
closed embodiments. Ifno device Type Flag is included in the
beacon, processing may then continue to monitor the multi-
cast address (step 2022). Returning again to step 2010, if the
beacon includes a Device Type Flag, an evaluation is then
made to determine if the Device Type Flag indicates a DP
server (step 2012). If so, the master controller may then load
the DPD’s Module and remove the DPD from the unbound
list (step 2014) and may then commence communication with
the DPD and control thereof (step 2016) according to the
disclosed embodiments. An evaluation may then be made to
determine if the Device Type Flag indicates a DP server (step
2018). If not, a binding notification is then broadcast (step
2020) that indicates the DPD is bound thereto, and the device
discovery and binding routine cycle may then end (step
2030). If the Device Type Flag indicates a DP server at step
2018, the device discovery and binding routine cycle may
then end according to step 2030.

Returning again to step 2012, if the Device Type Flag does
not indicate a DP server, the multicast address may continue
to be monitored (step 2022), and an evaluation of whether the



US 9,160,625 B2

27

DAD is bound to a DPD by an administrator may be made
(step 2024). Ifthe DAD is bound to a DPD, the DPD’s module
may then be loaded according to step 2014. If the DAD is not
bound to the DPD, the master controller may evaluate
whether a binding notification has been broadcast on the
multicast address indicating the DPD has been bound to
another master controller (step 2026). If the DPD has not been
bound to another master controller, the master controller may
continue monitoring the broadcast address according to step
2022 until the DAD is bound to the DPD. In the event that a
binding notification is detected at step 2026, the master con-
troller 1980 then removes the DPD from the unbound DPD
list maintained by the master controller 1980 (step 2028), and
the device discovery and binding routine cycle may then end
according to step 2030.

Servers may be deployed in large installations, such as
universities or large multiple dwelling units, with many
installed master controllers system. Inclusion of the device
Type Flag in the device discovery beacon provides for auto-
matic discovery of a server and loading of the server’s module
at the master controller for communication and control of the
server without intervention by an administrator.

As described, mechanisms for dynamic device discovery
and binding of servers to multiple master controllers are
provided. In one implementation, a device discovery beacon
that includes a device Type Flag may be broadcast by a
dynamic physical device. If the dynamic physical device
comprises a server that is configured to bind to multiple
master controllers, the dynamic physical device may set the
value ofthe device Type Flag to indicate the dynamic physical
device comprises a server. On detection of the beacon, a
master controller configured according to disclosed embodi-
ments may evaluate the device Type Flag. Upon determining
the device Type Flag indicates the dynamic physical device
comprise a server, the master controller may load a device
Module for the dynamic physical device and commence com-
munications with the dynamic physical device. In this
instance, the master controller advantageously does not
broadcast a binding notification thereby allowing other mas-
ter controllers to bind with the dynamic physical device.

The flowcharts of FIGS. 5,8A-8C, and 20 depict process
serialization to facilitate an understanding of disclosed
embodiments and are not necessarily indicative of the serial-
ization of the operations being performed. In various embodi-
ments, the processing steps described in FIGS. 5,8A-8C, and
20 may be performed in varying order, and one or more
depicted steps may be performed in parallel with other steps.
Additionally, execution of some processing steps of FIGS. 5,
8A-8C, and 20 may be excluded without departing from
embodiments disclosed herein.

The illustrative block diagrams depict process steps or
blocks that may represent modules, segments, or portions of
code that include one or more executable instructions for
implementing specific logical functions or steps in the pro-
cess. Although the particular examples illustrate specific pro-
cess steps or procedures, many alternative implementations
are possible and may be made by simple design choice. Some
process steps may be executed in different order from the
specific description herein based on, for example, consider-
ations of function, purpose, conformance to standard, legacy
structure, user interface design, and the like.

Aspects of the present invention may be implemented in
software, hardware, firmware, or a combination thereof. The
various elements of the system, either individually or in com-
bination, may be implemented as a computer program prod-
uct tangibly embodied in a machine-readable storage device
for execution by a processing unit. Various steps of embodi-

10

15

20

25

30

35

40

45

50

55

60

65

28

ments of the invention may be performed by a computer
processor executing a program tangibly embodied on a com-
puter-readable medium to perform functions by operating on
input and generating output. The computer-readable medium
may be, for example, a memory, a transportable medium such
as a compact disk, a floppy disk, or a diskette, such that a
computer program embodying the aspects of the present
invention can be loaded onto a computer. The computer pro-
gram is not limited to any particular embodiment, and may,
for example, be implemented in an operating system, appli-
cation program, foreground or background process, driver,
network stack, or any combination thereof, executing on a
single processor or multiple processors. Additionally, various
steps of embodiments of the invention may provide one or
more data structures generated, produced, received, or other-
wise implemented on a computer-readable medium, such as a
memory.

Although embodiments of the present invention have been
illustrated in the accompanied drawings and described in the
foregoing description, it will be understood that the invention
is not limited to the embodiments disclosed, but is capable of
numerous rearrangements, modifications, and substitutions
without departing from the spirit of the invention as set forth
and defined by the following claims. For example, the capa-
bilities of the invention can be performed fully and/or par-
tially by one or more of the blocks, modules, processors or
memories. Also, these capabilities may be performed in the
current manner or in a distributed manner and on, or via, any
device able to provide and/or receive information. Further,
although depicted in a particular manner, various modules or
blocks may be repositioned without departing from the scope
of the current invention. Still further, although depicted in a
particular manner, a greater or lesser number of modules and
connections can be utilized with the present invention in order
to accomplish the present invention, to provide additional
known features to the present invention, and/or to make the
present invention more efficient. Also, the information sent
between various modules can be sent between the modules
via at least one of a data network, the Internet, an Internet
Protocol network, a wireless source, and a wired source and
via plurality of protocols.

What is claimed is:

1. A method, comprising:

receiving, by a first master controller, a first device discov-
ery beacon from a first control system device;

determining the first device discovery beacon includes a
device type flag;

determining a value indicates the first control system
device is configured to bind to multiple master control-
lers;

loading, by the first master controller, an instance of a
device module associated with the first control system
device responsive to determining the value;

receiving, by the first master controller, a second device
discovery beacon from a second control system device;

determining the second device discovery beacon does not
include a device type flag; and

detecting, by the first master controller, a notification indi-
cating the second control system device has been bound
to another master controller.

2. The method of claim 1, further comprising:

receiving, by a second master controller, the first device
discovery beacon from the first control system device;

evaluating the beacon for inclusion of the device type flag;

determining the beacon includes the device type flag;

evaluating the value of the device type flag;



US 9,160,625 B2

29

determining the value indicates the first control system
device comprises a server configured to bind to multiple
master controllers; and

loading, by the second master controller, an instance of the

device module associated with the first control system
device responsive to determining the value indicates the
device comprises the server configured to bind to mul-
tiple master controllers.

3. The method of claim 1, further comprising:

receiving, by the first master controller, a third device dis-

covery beacon from a second control system device;
evaluating the third device discovery beacon for inclusion
of'a device type flag;

determining the third device discovery beacon includes the

device type flag;

evaluating a value of the device type flag of the third device

discovery beacon;

determining the value of the device type flag of the third

device discovery beacon indicates the second control
system device does not comprise a server configured to
bind to multiple master controllers; and

adding, by the first master controller, a designation of the

second control system device to an unbound dynamic
physical device list maintained by the first master con-
troller.

4. The method of claim 3, further comprising:

receiving, by the first master controller, a directive to bind

a dynamic application device associated with the second
control system device to the first master controller; and

loading, by the first master controller, an instance of a

device module associated with the second control sys-
tem device responsive to receiving the directive.

5. The method of claim 4, further comprising broadcasting,
by the first master controller, a binding notification on a
multicast address indicating the second control system device
has been bound to the first master controller.

6. The method of claim 1, comprising evaluating at least
one of:

the second device discovery beacon for inclusion of the

device type flag; and

the value of the device type flag.

7. The method of claim 1, wherein the another master
controller is different from the first master controller.

8. The method of claim 1, further comprising commencing
communication and control of the first control system device
by the first master controller responsive to loading the
instance of the device module.

9. A non-transitory computer-readable storage medium
having computer-executable instructions for execution by a
processing system, the computer-executable instructions
that, when executed, cause the processing system to:

receive, by a first master controller, a first device discovery

beacon from a first control system device;

determine the beacon includes the device type flag;

determine a value of the device type flag indicates the first

control system device is configured to bind to multiple
master controllers;

load, by the first master controller, an instance of a device

module associated with the first control system device
responsive to determining the value;

receive, by the first master controller, a second device

discovery beacon from a second control system device;
determine the second device discovery beacon does not
include the device type flag; and

detect, by the first master controller, a notification indicat-

ing the second control system device has been bound to
another master controller.

10

20

25

30

35

40

45

50

55

60

65

30

10. The non-transitory computer-readable storage medium
of claim 9, further comprising instructions that, when
executed, cause the processing system to:

receive, by a second master controller, the first device
discovery beacon from the first control system device;

evaluate the beacon for inclusion of the device type flag;

determine the beacon includes the device type flag;
evaluate the value of the device type flag;

determine the value indicates the first control system
device comprises a server configured to bind to multiple
master controllers; and

load, by the second master controller, an instance of the
device module associated with the first control system
device responsive to determining the value indicates the
device comprises the server configured to bind to mul-
tiple master controllers.

11. The non-transitory computer-readable storage medium
of claim 9, further comprising instructions that, when
executed, cause the processing system to:

receive, by the first master controller, a third device dis-
covery beacon from a second control system device;

evaluate the third device discovery beacon for inclusion of
a device type flag;

determine the third device discovery beacon includes the
device type flag;

evaluate a value of the device type flag of the third device
discovery beacon;

determine the value of the device type flag of the third
device discovery beacon indicates the second control
system device does not comprise a server configured to
bind to multiple master controllers; and

add, by the first master controller, a designation of the
second control system device to an unbound dynamic
physical device list maintained by the first master con-
troller.

12. The non-transitory computer-readable storage medium
of claim 11, further comprising instructions that, when
executed, cause the processing system to:

receive, by the first master controller, a directive to bind a
dynamic application device associated with the second
control system device to the first master controller; and

load, by the first master controller, an instance of a device
module associated with the second control system
device responsive to receiving the directive.

13. The non-transitory computer-readable storage medium
of claim 12, further comprising instructions that, when
executed, cause the processing system to broadcast, by the
first master controller, a binding notification on a multicast
address indicating the second control system device has been
bound to the first master controller.

14. The non-transitory computer-readable storage medium
of claim 9, further comprising instructions that, when
executed, cause the processing system to evaluate at least one
of:

the second device discovery beacon for inclusion of the
device type flag; and

the value of the device type flag.

15. The non-transitory computer-readable storage medium
of claim 9, wherein the another master controller is different
from the first master controller.

16. A system, comprising:

a first dynamic physical device that is configured to bind to

multiple master controllers;

a first master controller communicatively coupled with the
first dynamic physical device that comprises a first
instance of a dynamic application device corresponding
to the first dynamic physical device; and



US 9,160,625 B2

31

a second master controller communicatively coupled with
the first dynamic physical device that comprises a sec-
ond instance of the dynamic application device that cor-
responds to the first dynamic physical device, wherein
the first dynamic physical device broadcasts a first
device discovery beacon that comprises a device type
flag having a value that indicates the first dynamic physi-
cal device comprises a server, wherein the first master
controller and the second master controller receive the
first device discovery beacon, wherein the first master
controller loads a first instance of a device module asso-
ciated with the first dynamic physical device responsive
to a determination that the value indicates the first
dynamic physical device comprises the server, and
wherein the second master controller loads a second
instance of the device module responsive to a determi-
nation that the value indicates the first dynamic physical
device comprises a server, wherein the first master con-
troller detects a notification that indicates the second
dynamic physical device has been bound to the second
master controller.

17. The system of claim 16, wherein the first master con-
troller receives a third device discovery beacon from a second
dynamic physical device, evaluates the third device discovery
beacon forinclusion of'a device type flag, determines the third

10

15

20

32

device discovery beacon includes the device type flag, evalu-
ates a value of the device type flag of the third device discov-
ery beacon, determines the value of the device type flag of the
third device discovery beacon indicates the second dynamic
physical device does not comprise a server configured to bind
to multiple master controllers, and adds a designation of the
second dynamic physical device to an unbound dynamic
physical device list maintained by the first master controller.

18. The system of claim 17, wherein the first master con-
troller receives a directive to bind an instance of a dynamic
application device that corresponds to the second dynamic
physical device to the first master controller and loads an
instance of a device module associated with the second
dynamic physical device responsive to a receipt of the direc-
tive.

19. The system of claim 16, wherein the first master con-
troller and the second master controller receive the first device
discovery beacon and respectively evaluate the device type
flag value.

20. The system of claim 16, wherein the first master con-
troller and the second master controller receive the second
device discovery beacon and respectively evaluate the device
type flag value.



